(转) tarjan算法

转自:http://blog.csdn.net/xinghongduo/article/details/6195337

  说到以Tarjan命名的算法,我们经常提到的有3个,其中就包括本文所介绍的求强连通分量的Tarjan算法。而提出此算法的普林斯顿大学的Robert E Tarjan教授也是1986年的图灵奖获得者(具体原因请看本博“历届图灵奖得主”一文)。

 

      首先明确几个概念。

  1. 强连通图。在一个强连通图中,任意两个点都通过一定路径互相连通。比如图一是一个强连通图,而图二不是。因为没有一条路使得点4到达点1、2或3。
  2. 强连通分量。在一个非强连通图中极大的强连通子图就是该图的强连通分量。比如图三中子图{1,2,3,5}是一个强连通分量,子图{4}是一个强连通分量。

      关于Tarjan算法的伪代码和流程演示请到我的115网盘下载网上某大牛写的Doc(地址:http://u.115.com/file/f96af404d2<Tarjan算法.doc>)本文着重从另外一个角度,也就是针对tarjan的操作规则来讲解这个算法。

      其实,tarjan算法的基础是DFS。我们准备两个数组Low和Dfn。Low数组是一个标记数组,记录该点所在的强连通子图所在搜索子树的根节点的Dfn值(很绕嘴,往下看你就会明白),Dfn数组记录搜索到该点的时间,也就是第几个搜索这个点的。根据以下几条规则,经过搜索遍历该图(无需回溯)和对栈的操作,我们就可以得到该有向图的强连通分量。

 

  1. 数组的初始化:当首次搜索到点p时,Dfn与Low数组的值都为到该点的时间。
  2. 堆栈:每搜索到一个点,将它压入栈顶。
  3. 当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’不在栈中,p的low值为两点的low值中较小的一个。
  4. 当点p有与点p’相连时,如果此时(时间为dfn[p]时)p’在栈中,p的low值为p的low值和p’的dfn值中较小的一个。
  5. 每当搜索到一个点经过以上操作后(也就是子树已经全部遍历)的low值等于dfn值,则将它以及在它之上的元素弹出栈。这些出栈的元素组成一个强连通分量。
  6. 继续搜索(或许会更换搜索的起点,因为整个有向图可能分为两个不连通的部分),直到所有点被遍历。

      由于每个顶点只访问过一次,每条边也只访问过一次,我们就可以在O(n+m)的时间内求出有向图的强连通分量。但是,这么做的原因是什么呢?

 

      Tarjan算法的操作原理如下:

  1. Tarjan算法基于定理:在任何深度优先搜索中,同一强连通分量内的所有顶点均在同一棵深度优先搜索树中。也就是说,强连通分量一定是有向图的某个深搜树子树。
  2. 可以证明,当一个点既是强连通子图Ⅰ中的点,又是强连通子图Ⅱ中的点,则它是强连通子图Ⅰ∪Ⅱ中的点。
  3. 这样,我们用low值记录该点所在强连通子图对应的搜索子树的根节点的Dfn值。注意,该子树中的元素在栈中一定是相邻的,且根节点在栈中一定位于所有子树元素的最下方。
  4. 强连通分量是由若干个环组成的。所以,当有环形成时(也就是搜索的下一个点已在栈中),我们将这一条路径的low值统一,即这条路径上的点属于同一个强连通分量。
  5. 如果遍历完整个搜索树后某个点的dfn值等于low值,则它是该搜索子树的根。这时,它以上(包括它自己)一直到栈顶的所有元素组成一个强连通分量。

文章来源:http://www.cnblogs.com/saltless

posted @ 2013-08-04 20:40  琳&leen  阅读(204)  评论(0编辑  收藏  举报