美国2012年总统候选人政治献金数据分析

导入包

#数据处理工具
import numpy as np
import pandas as pd
from pandas import Series,DataFrame

对月份及所在政党进行定义


months = {'JAN' : 1, 'FEB' : 2, 'MAR' : 3, 'APR' : 4, 'MAY' : 5, 'JUN' : 6, 'JUL' : 7, 'AUG' : 8, 'SEP' : 9, 'OCT': 10, 'NOV': 11, 'DEC' : 12}
parties
= { 'Bachmann, Michelle': 'Republican', 'Romney, Mitt': 'Republican', 'Obama, Barack': 'Democrat', "Roemer, Charles E. 'Buddy' III": 'Reform', 'Pawlenty, Timothy': 'Republican', 'Johnson, Gary Earl': 'Libertarian', 'Paul, Ron': 'Republican', 'Santorum, Rick': 'Republican', 'Cain, Herman': 'Republican', 'Gingrich, Newt': 'Republican', 'McCotter, Thaddeus G': 'Republican', 'Huntsman, Jon': 'Republican', 'Perry, Rick': 'Republican' }

 

读取数据

数据下载地址:
链接:https://pan.baidu.com/s/19_-s3Xv_fiYkMtIca-stdw 
提取码:iwjt 
data = pd.read_csv('./data/usa_election.txt')
data.head()  #查看前五行数据

字段解释

cmte_id :候选人ID
cand_nm :候选人姓名 contbr_nm : 捐赠人姓名 contbr_st :捐赠人所在州 contbr_employer : 捐赠人所在公司 contbr_occupation : 捐赠人职业 contb_receipt_amt :捐赠数额(美元) contb_receipt_dt : 捐款的日期

创建一个各个候选人所在的党派party

data['party'] =data['cand_nm'].map(parties)
data.head()

party这一列中有哪些元素

data['party'].unique()

#元素:array(['Republican', 'Democrat', 'Reform', 'Libertarian'], dtype=object)

统计party列中各个元素出现次数,value_counts()是Series中的,无参,返回一个带有每个元素出现次数的Series

data['party'].value_counts()   #value_counts() 统计个数

#统计出来的个数
Democrat       292400
Republican     237575
Reform           5364
Libertarian       702
Name: party, dtype: int64

查看各个党派收到的政治献金总数contb_receipt_amt

data.groupby(by='party',axis=0)['contb_receipt_amt'].sum()

#数据
party
Democrat       8.105758e+07
Libertarian    4.132769e+05
Reform         3.390338e+05
Republican     1.192255e+08
Name: contb_receipt_amt, dtype: float64

查看具体每天各个党派收到的政治献金总数contb_receipt_amt 

data.groupby(by=['party','contb_receipt_dt'],axis=0)['contb_receipt_amt'].sum()

将表中日期格式转换为'yyy-mm-dd'

def transform_date(d):
    day,month,year = d.split('-')
    month = months[month]
    return '20'+year+'-'+str(month)+'-'+day


date = data['contb_receipt_dt'].map(transform_date)
data['contb_receipt_dt'] = date
data.head()

查看老兵(捐献者职业)DISABLED VETERAN主要支持谁  :查看老兵们捐赠给谁的钱最多

data['contbr_occupation'] == 'DISABLED VETERAN'
old_bing_df = data.loc[data['contbr_occupation'] == 'DISABLED VETERAN']
old_bing_df.head()

对竟选者进行分组

old_bing_df.groupby(by='cand_nm',axis=0)['contb_receipt_amt'].sum()

找出投资的最大值

data['contb_receipt_amt'].max()

找出候选人的捐赠者中,捐赠金额最大的人的职业以及捐献额  .通过query("查询条件来查找捐献人职业")

data.query('contb_receipt_amt == %f'%data['contb_receipt_amt'].max())

 



 

posted @ 2019-05-14 23:08  答&案  阅读(629)  评论(1编辑  收藏  举报