Excaliburer`s Zone

It was challenging, but not risky.

  博客园 :: 首页 :: 博问 :: 闪存 :: 新随笔 :: 联系 :: 订阅 订阅 :: 管理 ::

由于百度是秋招的时候面的,现在很多问题都记不住了,这里只写下我还记得的题目吧(当时太懒了,不想写了。。。):

1.文本分类比赛用的什么模型?为什么?

答:LR、SVM、XGBoost。。。

问:最终选用了哪个?

答:blabla。。。线性核的SVM

问:为什么选线性核SVM?

答:效果最好,特征数目远大于样本数目时,选线性核的SVM比较好。

问:为什么?

答:LR受全部样本的影响,SVM只受支持向量的影响。(感觉有些牵强)

2.文本分类的数据是怎样的?类别标签是怎样的?

答:blabla。。。

3.LR多分类是怎么实现的?

答:softmax层

问:为什么用softmax层,而不用onevsall等多分类策略

。。。不记得了

4.SGD如何改进优化?

答:这里我理解错了,实际上他是想问mini-batch梯度下降。

5.推导带L1正则项的LR,以及如何进行优化的?

答。。。

6.gdbt和xgboost的区别?

答:(经典面试题)。。。

7.树模型、xgboost、gbdt哪个需要做特征归一化?

。。。

8.面对一个任务,如何选择模型?

我感觉这里可以理解为模型的使用场景。。。

9.LR和SVM的区别?

答:(经典面试题)。。。

10.过拟合的解决手段?

。。。

11.CNN、RNN、LSTM的原理?

。。。

12.书写下链表逆序?

。。。。

13.书写归并排序,并优化到空间复杂度为O(1)

。。。双指针

14.几种梯度下降法的区别?

。。。

15.Hadoop相关

posted on 2019-03-22 00:51  Excaliburer  阅读(322)  评论(1编辑  收藏  举报