P1993 小K的农场 题解
洛谷原网页
solution:
这是一道差分约束的题不会差分约束系统的人请往这边走
差分约束系统,其形式非常像单源最短路的三角形不等式,所以已图论算法来列出方程(我是按求至少值得算法来求的,求最大值相反)
\[\left\{\begin{matrix} & a-b \geq c(k=1)& \\ & b-a \geq c (k=2)& \\ & a-b \geq 0, b-a \geq 0(k=3) & \end{matrix}\right.
\]
如果建的图有负环(跑最长路求正环),即小K抽了记错了。
这题我原来打的是基于BFS_SPFA,然后超时了,SPFA又死了, 觉得我变菜了虽然DFS_SPFA好用但是复杂度还是指数级的,特别有可能被毒瘤出题人卡过容易TLE,所以因为题目数据范围是\(n,m \leq 10000\) 所以我可以分两中方案,如果为\(n * m \geq 1E+7\),那么就悬着DFS_SPFA,如果不满足,选择珂学的方法BFS_SPFA,
BFS_SPFA的找负环
记一个数组为\(cnt[i]\),表示经过的边数,如果\(cnt[i]\geq m\),即出现负环,这种方法效率很高但是最坏为O(nm)还是死,比网上很多牺牲正确性来跑有时得不偿失的算法好多了。
代码实现我知道你们最喜欢这个:
#include<cstdio>
#include<cstring>
#include<queue>
#include<cstdlib>
#define re register
using namespace std;
template<typename T>
inline void read(T&x)
{
x=0;
char s=getchar();
bool f=false;
while(!(s>='0'&&s<='9'))
{
if(s=='-')
f=true;
s=getchar();
}
while(s>='0'&&s<='9')
{
x=(x<<1)+(x<<3)+s-'0';
s=getchar();
}
if(f)
x=(~x)+1;
}
const int N=1000010;
int dis[N];
struct Edge
{
int next,to,dis;
} edge[N];
int num_edge,head[N],n,m,cnt[N],*v,*w;
bool exist[N];
inline void add_edge(const int&from,const int&to,const int&dis)
{
edge[++num_edge].next=head[from];
head[from]=num_edge;
edge[num_edge].to=to;
edge[num_edge].dis=dis;
}
inline void dfs_spfa(int u)
{
exist[u]=true;
for(re int i=head[u]; i; i=edge[i].next)
{
v=&edge[i].to;
w=&edge[i].dis;
if(dis[*v]<dis[u]+(*w))
{
dis[*v]=dis[u]+(*w);
if(exist[*v])
{
printf("No\n");
exit(0);
}
else
dfs_spfa(*v);
}
}
exist[u]=false;
}
queue<int>q;
inline void bfs_spfa()
{
dis[0]=0;
q.push(0);
re int u;
do
{
u=q.front();
q.pop();
exist[u]=false;
for(re int i=head[u]; i; i=edge[i].next)
{
v=&edge[i].to;
w=&edge[i].dis;
if(dis[*v]<dis[u]+(*w))
{
dis[*v]=dis[u]+(*w);
cnt[*v]=cnt[u]+1;
if(cnt[*v]>m)
{
printf("No\n");
return;
}
if(!exist[*v])
{
exist[*v]=true;
q.push(*v);
}
}
}
}
while(!q.empty());
printf("Yes\n");
}
int main()
{
read(n);
for(re int i=1; i<=n; i++)
dis[i]=-0x3f3f3f3f;
read(m);
for(re int i=1,k,a,b,c; i<=m; i++)
{
read(k);
read(a);
read(b);
if(k==1)
{
read(c);
add_edge(b,a,c);
}
else if(k==2)
{
read(c);
add_edge(a,b,-c);
}
else if(k==3)
{
add_edge(a,b,0);
add_edge(b,a,0);
}
}
for(re int i=1; i<=n; i++)
add_edge(0,i,0);
if(n*m>=1e7)
{
dfs_spfa(0);
printf("Yes\n");
}
else
bfs_spfa();
return 0;
}
如果差分约束系统已经有很大的基础,建议去做
[SCOI2011]糖果
和出纳员问题