python面向对象进阶 反射 单例模式 以及python实现类似java接口功能

      本篇将详细介绍Python 类的成员、成员修饰符、类的特殊成员。

类的成员

类的成员可以分为三大类:字段、方法和特性。

 

注:所有成员中,只有普通字段的内容保存对象中,即:根据此类创建了多少对象,在内存中就有多少个普通字段。

而其他的成员,则都是保存在类中,即:无论对象的多少,在内存中只创建一份。

一、字段

字段包括:普通字段和静态字段,他们在定义和使用中有所区别,而最本质的区别是内存中保存的位置不同,

  • 普通字段属于对象
  • 静态字段属于
class Province:

    # 静态字段
    country = '中国'

    def __init__(self, name):

        # 普通字段
        self.name = name


# 直接访问普通字段
obj = Province('河北省')
print obj.name

# 直接访问静态字段
Province.country

字段的定义和使用

  由上述代码可以看出【普通字段需要通过对象来访问】【静态字段通过类访问】,在使用上可以看出普通字段和静态字段的归属是不同的。

其在内容的存储方式类似如下图:

由上图可是:

  • 静态字段在内存中只保存一份
  • 普通字段在每个对象中都要保存一份

应用场景: 通过类创建对象时,如果每个对象都具有相同的字段,那么就使用静态字段

二、方法

方法包括:普通方法、静态方法和类方法,三种方法在内存中都归属于类,区别在于调用方式不同。

  • 普通方法:由对象调用;至少一个self参数;执行普通方法时,自动将调用该方法的对象赋值给self
  • 类方法:由调用; 至少一个cls参数;执行类方法时,自动将调用该方法的复制给cls
  • 静态方法:由调用;无默认参数;
class Foo:

    def __init__(self, name):
        self.name = name

    def ord_func(self):
        """ 定义普通方法,至少有一个self参数 """

        # print self.name
        print '普通方法'

    @classmethod
    def class_func(cls):
        """ 定义类方法,至少有一个cls参数 """

        print '类方法'

    @staticmethod
    def static_func():
        """ 定义静态方法 ,无默认参数"""

        print '静态方法'


# 调用普通方法
f = Foo()
f.ord_func()

# 调用类方法
Foo.class_func()

# 调用静态方法
Foo.static_func()

方法的定义和使用

  

相同点:对于所有的方法而言,均属于类(非对象)中,所以,在内存中也只保存一份。

不同点:方法调用者不同、调用方法时自动传入的参数不同。

三、属性  

如果你已经了解Python类中的方法,那么属性就非常简单了,因为Python中的属性其实是普通方法的变种。

对于属性,有以下三个知识点:

  • 属性的基本使用
  • 属性的两种定义方式

1、属性的基本使用

# ############### 定义 ###############
class Foo:

    def func(self):
        pass

    # 定义属性
    @property
    def prop(self):
        pass
# ############### 调用 ###############
foo_obj = Foo()

foo_obj.func()
foo_obj.prop   #调用属性

属性的定义和使用 

由属性的定义和调用要注意一下几点:

  • 定义时,在普通方法的基础上添加 @property 装饰器;
  • 定义时,属性仅有一个self参数
  • 调用时,无需括号
               方法:foo_obj.func()
               属性:foo_obj.prop

注意:属性存在意义是:访问属性时可以制造出和访问字段完全相同的假象

        属性由方法变种而来,如果Python中没有属性,方法完全可以代替其功能。

实例:对于主机列表页面,每次请求不可能把数据库中的所有内容都显示到页面上,而是通过分页的功能局部显示,所以在向数据库中请求数据时就要显示的指定获取从第m条到第n条的所有数据(即:limit m,n),这个分页的功能包括:

    • 根据用户请求的当前页和总数据条数计算出 m 和 n

                 根据m 和 n 去数据库中请求数据

# ############### 定义 ###############
class Pager:
    
    def __init__(self, current_page):
        # 用户当前请求的页码(第一页、第二页...)
        self.current_page = current_page
        # 每页默认显示10条数据
        self.per_items = 10 


    @property
    def start(self):
        val = (self.current_page - 1) * self.per_items
        return val

    @property
    def end(self):
        val = self.current_page * self.per_items
        return val

# ############### 调用 ###############

p = Pager(1)
p.start 就是起始值,即:m
p.end   就是结束值,即:n

从上述可见,Python的属性的功能是:属性内部进行一系列的逻辑计算,最终将计算结果返回。

2、属性的两种定义方式

属性的定义有两种方式:

  • 装饰器 即:在方法上应用装饰器
  • 静态字段 即:在类中定义值为property对象的静态字段

装饰器方式:在类的普通方法上应用@property装饰器

我们知道Python中的类有经典类和新式类,新式类的属性比经典类的属性丰富。( 如果类继object,那么该类是新式类 )
经典类,具有一种@property装饰器(如上一步实例)

# ############### 定义 ###############    
class Goods:

    @property
    def price(self):
        return "wupeiqi"
# ############### 调用 ###############
obj = Goods()
result = obj.price  # 自动执行 @property 修饰的 price 方法,并获取方法的返回值

  新式类,具有三种@property装饰器

# ############### 定义 ###############
class Goods(object):

    @property
    def price(self):
        print '@property'

    @price.setter
    def price(self, value):
        print '@price.setter'

    @price.deleter
    def price(self):
        print '@price.deleter'

# ############### 调用 ###############
obj = Goods()

obj.price          # 自动执行 @property 修饰的 price 方法,并获取方法的返回值

obj.price = 123    # 自动执行 @price.setter 修饰的 price 方法,并将  123 赋值给方法的参数

del obj.price      # 自动执行 @price.deleter 修饰的 price 方法 

注:经典类中的属性只有一种访问方式,其对应被 @property 修饰的方法
      新式类中的属性有三种访问方式,并分别对应了三个被@property、@方法名.setter、@方法名.deleter修饰的方法

由于新式类中具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除

class Goods(object):

    def __init__(self):
        # 原价
        self.original_price = 100
        # 折扣
        self.discount = 0.8

    @property
    def price(self):
        # 实际价格 = 原价 * 折扣
        new_price = self.original_price * self.discount
        return new_price

    @price.setter
    def price(self, value):
        self.original_price = value

    @price.deltter
    def price(self, value):
        del self.original_price

obj = Goods()
obj.price         # 获取商品价格
obj.price = 200   # 修改商品原价
del obj.price     # 删除商品原价

实例

  静态字段方式,创建值为property对象的静态字段

当使用静态字段的方式创建属性时,经典类和新式类无区别

class Foo:

    def get_bar(self):
        return 'wupeiqi'

    BAR = property(get_bar)

obj = Foo()
reuslt = obj.BAR        # 自动调用get_bar方法,并获取方法的返回值
print reuslt  

property的构造方法中有个四个参数

  • 第一个参数是方法名,调用 对象.属性 时自动触发执行方法
  • 第二个参数是方法名,调用 对象.属性 = XXX 时自动触发执行方法
  • 第三个参数是方法名,调用 del 对象.属性 时自动触发执行方法
  • 第四个参数是字符串,调用 对象.属性.__doc__ ,此参数是该属性的描述信息
class Foo:

    def get_bar(self):
        return 'wupeiqi'

    # *必须两个参数
    def set_bar(self, value): 
        return return 'set value' + value

    def del_bar(self):
        return 'wupeiqi'

    BAR = property(get_bar, set_bar, del_bar, 'description...')

obj = Foo()

obj.BAR              # 自动调用第一个参数中定义的方法:get_bar
obj.BAR = "alex"     # 自动调用第二个参数中定义的方法:set_bar方法,并将“alex”当作参数传入
del Foo.BAR          # 自动调用第三个参数中定义的方法:del_bar方法
obj.BAE.__doc__      # 自动获取第四个参数中设置的值:description...

  由于静态字段方式创建属性具有三种访问方式,我们可以根据他们几个属性的访问特点,分别将三个方法定义为对同一个属性:获取、修改、删除

class Goods(object):

    def __init__(self):
        # 原价
        self.original_price = 100
        # 折扣
        self.discount = 0.8

    def get_price(self):
        # 实际价格 = 原价 * 折扣
        new_price = self.original_price * self.discount
        return new_price

    def set_price(self, value):
        self.original_price = value

    def del_price(self, value):
        del self.original_price

    PRICE = property(get_price, set_price, del_price, '价格属性描述...')

obj = Goods()
obj.PRICE         # 获取商品价格
obj.PRICE = 200   # 修改商品原价
del obj.PRICE     # 删除商品原价

实例

  注意:Python WEB框架 Django 的视图中 request.POST 就是使用的静态字段的方式创建的属性

class WSGIRequest(http.HttpRequest):
    def __init__(self, environ):
        script_name = get_script_name(environ)
        path_info = get_path_info(environ)
        if not path_info:
            # Sometimes PATH_INFO exists, but is empty (e.g. accessing
            # the SCRIPT_NAME URL without a trailing slash). We really need to
            # operate as if they'd requested '/'. Not amazingly nice to force
            # the path like this, but should be harmless.
            path_info = '/'
        self.environ = environ
        self.path_info = path_info
        self.path = '%s/%s' % (script_name.rstrip('/'), path_info.lstrip('/'))
        self.META = environ
        self.META['PATH_INFO'] = path_info
        self.META['SCRIPT_NAME'] = script_name
        self.method = environ['REQUEST_METHOD'].upper()
        _, content_params = cgi.parse_header(environ.get('CONTENT_TYPE', ''))
        if 'charset' in content_params:
            try:
                codecs.lookup(content_params['charset'])
            except LookupError:
                pass
            else:
                self.encoding = content_params['charset']
        self._post_parse_error = False
        try:
            content_length = int(environ.get('CONTENT_LENGTH'))
        except (ValueError, TypeError):
            content_length = 0
        self._stream = LimitedStream(self.environ['wsgi.input'], content_length)
        self._read_started = False
        self.resolver_match = None

    def _get_scheme(self):
        return self.environ.get('wsgi.url_scheme')

    def _get_request(self):
        warnings.warn('`request.REQUEST` is deprecated, use `request.GET` or '
                      '`request.POST` instead.', RemovedInDjango19Warning, 2)
        if not hasattr(self, '_request'):
            self._request = datastructures.MergeDict(self.POST, self.GET)
        return self._request

    @cached_property
    def GET(self):
        # The WSGI spec says 'QUERY_STRING' may be absent.
        raw_query_string = get_bytes_from_wsgi(self.environ, 'QUERY_STRING', '')
        return http.QueryDict(raw_query_string, encoding=self._encoding)
    
    # ############### 看这里看这里  ###############
    def _get_post(self):
        if not hasattr(self, '_post'):
            self._load_post_and_files()
        return self._post

    # ############### 看这里看这里  ###############
    def _set_post(self, post):
        self._post = post

    @cached_property
    def COOKIES(self):
        raw_cookie = get_str_from_wsgi(self.environ, 'HTTP_COOKIE', '')
        return http.parse_cookie(raw_cookie)

    def _get_files(self):
        if not hasattr(self, '_files'):
            self._load_post_and_files()
        return self._files

    # ############### 看这里看这里  ###############
    POST = property(_get_post, _set_post)
    
    FILES = property(_get_files)
    REQUEST = property(_get_request)

Django源码

  所以,定义属性共有两种方式,分别是【装饰器】和【静态字段】,而【装饰器】方式针对经典类和新式类又有所不同。

类成员的修饰符

类的所有成员在上一步骤中已经做了详细的介绍,对于每一个类的成员而言都有两种形式:

  • 公有成员,在任何地方都能访问
  • 私有成员,只有在类的内部才能方法

私有成员和公有成员的定义不同:私有成员命名时,前两个字符是下划线。(特殊成员除外,例如:__init__、__call__、__dict__等)

class C:
 
    def __init__(self):
        self.name = '公有字段'
        self.__foo = "私有字段"  

私有成员和公有成员的访问限制不同

静态字段

  • 公有静态字段:类可以访问;类内部可以访问;派生类中可以访问
  • 私有静态字段:仅类内部可以访问;
class C:

    name = "公有静态字段"

    def func(self):
        print C.name

class D(C):

    def show(self):
        print C.name


C.name         # 类访问

obj = C()
obj.func()     # 类内部可以访问

obj_son = D()
obj_son.show() # 派生类中可以访问

公有静态字段
class C:

    __name = "公有静态字段"

    def func(self):
        print C.__name

class D(C):

    def show(self):
        print C.__name


C.__name       # 类访问            ==> 错误

obj = C()
obj.func()     # 类内部可以访问     ==> 正确

obj_son = D()
obj_son.show() # 派生类中可以访问   ==> 错误

私有静态字段  

普通字段

  • 公有普通字段:对象可以访问;类内部可以访问;派生类中可以访问
  • 私有普通字段:仅类内部可以访问;

ps:如果想要强制访问私有字段,可以通过 【对象._类名__私有字段明 】访问(如:obj._C__foo),不建议强制访问私有成员。

class C:
    
    def __init__(self):
        self.foo = "公有字段"

    def func(self):
        print self.foo  # 类内部访问

class D(C):
    
    def show(self):
        print self.foo # 派生类中访问

obj = C()

obj.foo     # 通过对象访问
obj.func()  # 类内部访问

obj_son = D();
obj_son.show()  # 派生类中访问

公有字段
class C:
    
    def __init__(self):
        self.__foo = "私有字段"

    def func(self):
        print self.foo  # 类内部访问

class D(C):
    
    def show(self):
        print self.foo # 派生类中访问

obj = C()

obj.__foo     # 通过对象访问    ==> 错误
obj.func()  # 类内部访问        ==> 正确

obj_son = D();
obj_son.show()  # 派生类中访问  ==> 错误

私有字段 

方法、属性的访问于上述方式相似,即:私有成员只能在类内部使用

ps:非要访问私有属性的话,可以通过 对象._类__属性名

类的特殊成员

上文介绍了Python的类成员以及成员修饰符,从而了解到类中有字段、方法和属性三大类成员,并且成员名前如果有两个下划线,则表示该成员是私有成员,私有成员只能由类内部调用。无论人或事物往往都有不按套路出牌的情况,Python的类成员也是如此,存在着一些具有特殊含义的成员,详情如下:

1. __doc__

  表示类的描述信息

class Foo:
    """ 描述类信息,这是用于看片的神奇 """

    def func(self):
        pass

print Foo.__doc__
#输出:类的描述信息 

2. __module__ 和  __class__ 

  __module__ 表示当前操作的对象在那个模块

  __class__     表示当前操作的对象的类是什么

#!/usr/bin/env python
# -*- coding:utf-8 -*-

class C:

    def __init__(self):
        self.name = 'wupeiqi'

lib/aa.py
from lib.aa import C

obj = C()
print obj.__module__  # 输出 lib.aa,即:输出模块
print obj.__class__      # 输出 lib.aa.C,即:输出类 

3. __init__

  构造方法,通过类创建对象时,自动触发执行。

class Foo:

    def __init__(self, name):
        self.name = name
        self.age = 18


obj = Foo('wupeiqi') # 自动执行类中的 __init__ 方法 

4. __del__

  析构方法,当对象在内存中被释放时,自动触发执行。

注:此方法一般无须定义,因为Python是一门高级语言,程序员在使用时无需关心内存的分配和释放,因为此工作都是交给Python解释器来执行,所以,析构函数的调用是由解释器在进行垃圾回收时自动触发执行的。

class Foo:

    def __del__(self):
        pass 

5. __call__

  对象后面加括号,触发执行。

注:构造方法的执行是由创建对象触发的,即:对象 = 类名() ;而对于 __call__ 方法的执行是由对象后加括号触发的,即:对象() 或者 类()()

class Foo:

    def __init__(self):
        pass
    
    def __call__(self, *args, **kwargs):

        print '__call__'


obj = Foo() # 执行 __init__
obj()       # 执行 __call__ 

6. __dict__

  类或对象中的所有成员

上文中我们知道:类的普通字段属于对象;类中的静态字段和方法等属于类:

class Province:

    country = 'China'

    def __init__(self, name, count):
        self.name = name
        self.count = count

    def func(self, *args, **kwargs):
        print 'func'

# 获取类的成员,即:静态字段、方法、
print Province.__dict__
# 输出:{'country': 'China', '__module__': '__main__', 'func': <function func at 0x10be30f50>, '__init__': <function __init__ at 0x10be30ed8>, '__doc__': None}

obj1 = Province('HeBei',10000)
print obj1.__dict__
# 获取 对象obj1 的成员
# 输出:{'count': 10000, 'name': 'HeBei'}

obj2 = Province('HeNan', 3888)
print obj2.__dict__
# 获取 对象obj1 的成员
# 输出:{'count': 3888, 'name': 'HeNan'} 

 7. __str__

  如果一个类中定义了__str__方法,那么在打印 对象 时,默认输出该方法的返回值。

class Foo:

    def __str__(self):
        return 'wupeiqi'


obj = Foo()
print obj
# 输出:wupeiqi

8、__getitem__、__setitem__、__delitem__

用于索引操作,如字典。以上分别表示获取、设置、删除数据

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
class Foo(object):
 
    def __getitem__(self, key):
        print '__getitem__',key
 
    def __setitem__(self, key, value):
        print '__setitem__',key,value
 
    def __delitem__(self, key):
        print '__delitem__',key
 
 
obj = Foo()
 
result = obj['k1']      # 自动触发执行 __getitem__
obj['k2'] = 'wupeiqi'   # 自动触发执行 __setitem__
del obj['k1']           # 自动触发执行 __delitem__ 

9、__getslice__、__setslice__、__delslice__

 该三个方法用于分片操作,如:列表

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
class Foo(object):
 
    def __getslice__(self, i, j):
        print '__getslice__',i,j
 
    def __setslice__(self, i, j, sequence):
        print '__setslice__',i,j
 
    def __delslice__(self, i, j):
        print '__delslice__',i,j
 
obj = Foo()
 
obj[-1:1]                   # 自动触发执行 __getslice__
obj[0:1] = [11,22,33,44]    # 自动触发执行 __setslice__
del obj[0:2]                # 自动触发执行 __delslice__

  10. __iter__ 

用于迭代器,之所以列表、字典、元组可以进行for循环,是因为类型内部定义了 __iter__ 

class Foo(object):
    pass


obj = Foo()

for i in obj:
    print i
    
# 报错:TypeError: 'Foo' object is not iterable

第一步
#!/usr/bin/env python
# -*- coding:utf-8 -*-

class Foo(object):
    
    def __iter__(self):
        pass

obj = Foo()

for i in obj:
    print i

# 报错:TypeError: iter() returned non-iterator of type 'NoneType'

第二步
#!/usr/bin/env python
# -*- coding:utf-8 -*-

class Foo(object):

    def __init__(self, sq):
        self.sq = sq

    def __iter__(self):
        return iter(self.sq)

obj = Foo([11,22,33,44])

for i in obj:
    print i

第三步

以上步骤可以看出,for循环迭代的其实是  iter([11,22,33,44]) ,所以执行流程可以变更为:

#!/usr/bin/env python
# -*- coding:utf-8 -*-
 
obj = iter([11,22,33,44])
 
for i in obj:
    print i
#!/usr/bin/env python
# -*- coding:utf-8 -*-

obj = iter([11,22,33,44])

while True:
    val = obj.next()
    print val

For循环语法内部

  11. __new__ 和 __metaclass__

class Foo(object):
 
    def __init__(self):
        pass
 
obj = Foo()   # obj是通过Foo类实例化的对象 

上述代码中,obj 是通过 Foo 类实例化的对象,其实,不仅 obj 是一个对象,Foo类本身也是一个对象,因为在Python中一切事物都是对象

如果按照一切事物都是对象的理论:obj对象是通过执行Foo类的构造方法创建,那么Foo类对象应该也是通过执行某个类的 构造方法 创建。

print type(obj) # 输出:<class '__main__.Foo'>     表示,obj 对象由Foo类创建
print type(Foo) # 输出:<type 'type'>              表示,Foo类对象由 type 类创建

所以,obj对象是Foo类的一个实例Foo类对象是 type 类的一个实例,即:Foo类对象 是通过type类的构造方法创建。

那么,创建类就可以有两种方式:

a). 普通方式

class Foo(object):
 
    def func(self):
        print 'hello wupeiqi'

b).特殊方式(type类的构造函数)

def func(self):
    print 'hello wupeiqi'
 
Foo = type('Foo',(object,), {'func': func})
#type第一个参数:类名
#type第二个参数:当前类的基类
#type第三个参数:类的成员

==》 类 是由 type 类实例化产生

那么问题来了,类默认是由 type 类实例化产生,type类中如何实现的创建类?类又是如何创建对象?

答:类中有一个属性 __metaclass__,其用来表示该类由 谁 来实例化创建,所以,我们可以为 __metaclass__ 设置一个type类的派生类,从而查看 类 创建的过程。

class MyType(type):

    def __init__(self, what, bases=None, dict=None):
        super(MyType, self).__init__(what, bases, dict)

    def __call__(self, *args, **kwargs):
        obj = self.__new__(self, *args, **kwargs)

        self.__init__(obj)

class Foo(object):

    __metaclass__ = MyType

    def __init__(self, name):
        self.name = name

    def __new__(cls, *args, **kwargs):
        return object.__new__(cls, *args, **kwargs)

# 第一阶段:解释器从上到下执行代码创建Foo类
# 第二阶段:通过Foo类创建obj对象
obj = Foo()

python反射 

一.简介

  反射是通过字符串的形式操作对象相关的成员

反射也就是:通过字符串的形式,导入模块。通过字符串的形式,去模块中寻找指定函数,并执行。Python中的反射功能是由以下四个内置函数提供:

hasattr(模块,"成员"):根据字符串的形式去某个模块中检查是否含有某成员

getattr(模块,"成员"):根据字符串的形式去某个模块中获取成员

setattr(模块,"成员"):根据字符串的形式去某个模块中设置成员

delattr(模块,"成员"):根据字符串的形式去某个模块中删除成员

import moudule
#查看属性是否存在,如果有返回True否则返回False
# result = hasattr(moudule,"fun")
# print(result)
#设置添加对象
result = hasattr(moudule,"fun2")
print(result)
r = setattr(moudule,"fun2",lambda a:a+2)
result = hasattr(moudule,"fun2")
print(result)
#删除对象
r = delattr(moudule,"fun2")
result = hasattr(moudule,"fun2")
print(result)

根据字符串形式去模块中寻找函数并且执行函数

inp_name = input("请输入模块:")
inp_func = input("请输入要执行的函数:")
#导入输入的模块
inp = __import__(inp_name)
#获取模块中的函数名
target_func = getattr(inp,inp_func)
#执行函数
ret = target_func()
print(ret)
#打印结果:
请输入模块:commons
请输入要执行的函数f1
f1
F1 
# 查看是否存在,不存在False,存在True
r = hasattr(commons,"NAME")
print(r)

# 设置成员
r = setattr(commons,"ARG",lambda a: a + 1)
print(r)

# 删除成员
delattr(commons,"NAME")
#查看已删除成员是否还存在
r = hasattr(commons,"NAME")
print(r)

 注:

#设置None:如果找到成员f1,就会执行;如果没有找到,就会报错
target_func = getattr(commons,"Name",None)
ret = target_func()
print(ret)

  扩展两种导入模块的方式:

a = __import__("模块名")

#fromlist = True递归导入
a = __import__("文件名.文件名.模块名",fromlist=True)

  例

#模块名/函数名
url = input("请输入url:")
#模块名和函数名的格式
target_module,target_func = url.split("/")
#导入用户输入的模块
m = __import__("lib."+target_module,fromlist=True)
if hasattr(m,target_func)
    target_func = getattr(m,target_func)
    r = target_func()
    print(r)
else:
    print("404")

单例模式

1、单例是只有一个实例
2、通过静态字段+静态字段伪造出一个单例效果
3、什么时候用:当所有实例中封装的数据相同时,创建单例模式(eg:连接池)

用单例模式创建连接池:
class CP:
    __instance = None
    def __init__(self):
        self.ip = "1.1.1.1"
        self.port = 3306
        self.pwd = "123123"
        self.user = "xxx"
        self.conn_list = [1,2,3,4,5,6]
    @staticmethod
    def get_instance():
        if CP.__instance:
            return CP.__instance
        else:
            # 创建一个对象,并将对象赋值给静态字段__instance
            CP.__instance = CP() #执行init方且创建对象,并赋值给私有静态字段
            return CP.__instance #将赋值的返回给私有静态字段

obj1 = CP.get_instance() # 静态字段类调用
print(obj1)

  

class ConnectionPool:

    __instance = None

    def __init__(self):
        self.ip = "1.1.1.1"
        self.port = 3306
        self.pwd = "123123"
        self.username = 'xxxx'
        # 去连接
        self.conn_list = [1,2,3,4,5,6,7,8,9, 10]

    @staticmethod
    def get_instance():
        if ConnectionPool.__instance:
            return ConnectionPool.__instance
        else:
            # 创建一个对象,并将对象赋值给静态字段 __instance
            ConnectionPool.__instance = ConnectionPool()
            return ConnectionPool.__instance

    def get_connection(self):
        # 获取连接
        import random
        r = random.randrange(1,11)
        return r

 python实现类似java接口功能 

#通过抽象类和抽象方法,做抽象用
from abc import ABCMeta
from abc import abstractmethod #导入抽象方法

class Father(metaclass=ABCMeta):#创建抽象类
    @abstractmethod
    def f1(self):pass
    @abstractmethod
    def f2(self):pass

class F1(Father):
    def f1(self):pass
    def f2(self):pass
    def f3(self):pass
obj=F1()

  

 

 

 

  

posted @ 2016-06-05 14:40  wangheng1409  阅读(669)  评论(0编辑  收藏  举报