摘要:
1.生成器 1)MRU(SketchyGAN) 计算过程为: 与DCGAN[46]和ResNet生成架构的定性和定量比较可以在5.3节中找到。MRU块有两个输入:输入特征图xi和图像I,输出特征图yi。为了方便起见,我们只讨论输入和输出具有相同空间维数的情况。令[·,·]为串联,Conv(x)为x上 阅读全文
摘要:
Abstract 许多图像到图像的翻译问题是有歧义的,因为一个输入图像可能对应多个可能的输出。在这项工作中,我们的目标是在一个条件生成模型设置中建立可能的输出分布。将模糊度提取到一个低维潜在向量中,在测试时随机采样。生成器学习将给定的输入与此潜在编码映射到输出。我们明确地鼓励输出和潜在编码之间的连接 阅读全文
摘要:
Abstract 最近在两个领域上的图像翻译研究取得了显著的成果。但是在处理多于两个领域的问题上,现存的方法在尺度和鲁棒性上还是有所欠缺,因为需要为每个图像域对单独训练不同的模型。为了解决该问题,我们提出了StarGAN方法,这是一个新型的可扩展的方法,能够仅使用一个单一模型就实现多领域的图像翻译。 阅读全文
摘要:
摘要:无监督图像转换是计算机视觉领域中一个重要而又具有挑战性的问题。给定源域中的一幅图像,目标是学习目标域中对应图像的条件分布,而不需要看到任何对应图像对的例子。虽然这种条件分布本质上是多模态的,但现有的方法做了过度简化的假设,将其建模为确定性的一对一映射。因此,它们无法从给定的源域映像生成不同的输 阅读全文
摘要:
Abstract 在这篇论文中,我们提出了自注意生成对抗网络(SAGAN),它是用于图像生成任务的允许注意力驱动的、长距离依赖的建模。传统的卷积GANs只根据低分辨率图上的空间局部点生成高分辨率细节。在SAGAN中,可以使用来自所有特征位置的线索生成细节。此外,判别器可以检查图像中较远部分的细节特征 阅读全文
摘要:
ABSTRACT 在本文中,我们探讨了从线条生成逼真的人脸图像的任务。先前的基于条件生成对抗网络(cGANs)的方法已经证明,当条件图像和输出图像共享对齐良好的结构时,它们能够生成视觉上可信的图像。然而,这些模型无法合成具有完整定义结构的人脸图像,例如眼睛、鼻子、嘴巴等,特别是当条件线图缺少一个或多 阅读全文
摘要:
https://github.com/wchen342/SketchyGAN Abstract 从人体草图中合成逼真的图像是计算机图形学和视觉学中的一个具有挑战性的课题。现有的方法要么需要精确的边缘图,要么依赖于检索现有的照片。在这项工作中,我们提出了一种新颖的生成对抗网络(GAN)方法,它综合了包 阅读全文
摘要:
参考https://realpython.com/pipenv-guide/#package-distribution Pipenv: A Guide to the New Python Packaging Tool Pipenv是Python的一个打包工具,它使用pip、virtualenv和旧的 阅读全文