tqdm学习-一个快速,可扩展的Python和CLI进度条

参考:https://pypi.org/project/tqdm/

1.安装:

(base) userdeMacBook-Pro:~ user$ conda activate deeplearning
(deeplearning) userdeMacBook-Pro:~ user$ conda install -c conda-forge tqdm
 
Collecting package metadata: done
Solving environment: done

## Package Plan ##

  environment location: /anaconda3/envs/deeplearning

  added / updated specs:
    - tqdm

...
Downloading and Extracting Packages
python-1.6           | 3.7 MB    | ##################################### | 100% 
tqdm-4.35.0          | 42 KB     | ##################################### | 100% 
decorator-4.4.0      | 13 KB     | ##################################### | 100% 
ca-certificates-2019 | 143 KB    | ##################################### | 100% 
openssl-1.1.1c       | 1.9 MB    | ##################################### | 100% 
Preparing transaction: done
Verifying transaction: done
Executing transaction: done

使用这个方法安装好像将我conda的环境的python版本换成了1.6版本,不好:

(deeplearning) userdeMBP:bin user$ jupyter notebook
Traceback (most recent call last):
  File "/anaconda3/envs/deeplearning/bin/jupyter", line 7, in <module>
    from jupyter_core.command import main
ModuleNotFoundError: No module named 'jupyter_core'

解决,回到原来的状态:

(deeplearning) userdeMBP:bin user$ conda uninstall tqdm
Collecting package metadata: done
Solving environment: done

## Package Plan ##

  environment location: /anaconda3/envs/deeplearning

  removed specs:
    - tqdm


The following packages will be REMOVED:

  tqdm-4.35.0-py_0


Proceed ([y]/n)? y

Preparing transaction: done
Verifying transaction: done
Executing transaction: done
(deeplearning) userdeMBP:bin user$ conda update python
The following packages will be UPDATED:

  certifi                pkgs/main::certifi-2019.3.9-py36_0 --> conda-forge::certifi-2019.9.11-py37_0
  python                                              1.6-0 --> 3.7.3-h93065d6_1
  readline               pkgs/main::readline-7.0-h1de35cc_5 --> conda-forge::readline-8.0-hcfe32e1_0
  sqlite                pkgs/main::sqlite-3.27.2-ha441bb4_0 --> conda-forge::sqlite-3.29.0-hb7d70f7_1
  tk                         pkgs/main::tk-8.6.8-ha441bb4_0 --> conda-forge::tk-8.6.9-h2573ce8_1003
  wheel              anaconda/pkgs/main::wheel-0.33.1-py36~ --> conda-forge::wheel-0.33.6-py37_0

在anaconda上重新安装下jupyter notebook即可

 

换成了下面的下载方法:

(base) userdembp:bin user$ conda activate deeplearning3.5
(deeplearning3.5) userdembp:bin user$ pip install -e git+https://github.com/tqdm/tqdm.git@master#egg=tqdm
Obtaining tqdm from git+https://github.com/tqdm/tqdm.git@master#egg=tqdm
  Cloning https://github.com/tqdm/tqdm.git (to revision master) to ./src/tqdm
Installing collected packages: tqdm
  Running setup.py develop for tqdm
Successfully installed tqdm
You are using pip version 19.0.3, however version 19.2.3 is available.
You should consider upgrading via the 'pip install --upgrade pip' command.

 

2.使用

tqdm是通用的,能以很多种方式使用。下面给出主要的三种方式:

1)基于迭代器的方法:

即将tqdm封装在任意迭代器中

# conding:utf-8
from tqdm import tqdm
import time

text = ""
for char in tqdm(["a", "b", "c", "d"]):
    time.sleep(0.25)
    text = text + char
print(text)

运行返回:

/anaconda3/envs/deeplearning3.5/bin/python3.5 /Users/user/PycharmProjects/new/learning.py
 75%|███████▌  | 3/4 [00:00<00:00,  3.97it/s]abcd
100%|██████████| 4/4 [00:01<00:00,  3.96it/s]

Process finished with exit code 0

 

tqdm(range(i))可以使用trange(i)替换:

# conding:utf-8
from tqdm import tqdm
import time

text = 0
for i in tqdm(range(10)):
    time.sleep(0.25)
    text += i
print(text)

返回:

/anaconda3/envs/deeplearning3.5/bin/python3.5 /Users/user/PycharmProjects/new/learning.py
100%|██████████| 10/10 [00:02<00:00,  3.96it/s]
45

Process finished with exit code 0

等价于:

# conding:utf-8
from tqdm import trange
import time

text = 0
for i in trange(10):
    time.sleep(0.25)
    text += i
print(text)

返回:

/anaconda3/envs/deeplearning3.5/bin/python3.5 /Users/user/PycharmProjects/new/learning.py
 90%|█████████ | 9/10 [00:02<00:00,  3.96it/s]45
100%|██████████| 10/10 [00:02<00:00,  3.96it/s]

Process finished with exit code 0

 

在循环外面实例化能够实现tqdm()的手动控制:

# conding:utf-8
from tqdm import tqdm
import time

pbar = tqdm(["a", "b", "c", "d"])
for char in pbar:
    time.sleep(0.25)
    pbar.set_description("processing %s" % char)

返回:

/anaconda3/envs/deeplearning3.5/bin/python3.5 /Users/user/PycharmProjects/new/learning.py
processing d: 100%|██████████| 4/4 [00:01<00:00,  3.95it/s]

Process finished with exit code 0

前四步是processing a,processing b,processing c

 

2)手动控制

通过使用with语句来实现tqdm()的手动控制:

# conding:utf-8
from tqdm import tqdm
import time

with tqdm(total=100) as pbar:
    for i in range(10):
        time.sleep(0.1)
        pbar.update(10)

返回:

/anaconda3/envs/deeplearning3.5/bin/python3.5 /Users/user/PycharmProjects/new/learning.py
100%|██████████| 100/100 [00:01<00:00, 97.06it/s]

Process finished with exit code 0

 

如果提供了可选变量total(或者如len()的可迭代函数),就会显示预测状态

with语句也是可选的(你也可以直接赋值tqdm()到一个变量上,重点就在于你不要忘记了在最后的时候手动del或closr()它),使用with的好处就是它会在最后自动关闭

# conding:utf-8
from tqdm import tqdm
import time

pbar = tqdm(total=100)
for i in range(10):
    time.sleep(0.1)
    pbar.update(10)
pbar.close()

返回:

/anaconda3/envs/deeplearning3.5/bin/python3.5 /Users/user/PycharmProjects/new/learning.py
100%|██████████| 100/100 [00:01<00:00, 97.40it/s]

Process finished with exit code 0

 

3)模块

可能tqdm最优美的使用就是在脚本或命令行中。简单在管道中插入tqdm(或者命令python -m tqdm),这样在打印过程到stderr时将传递所有stdin到stdout

下面的例子阐述了在当前目录中计算所有python文件中的行数的例子,并且包含这相应的记时信息:

(deeplearning3.5) userdembp:new user$ time find . -name '*.py' -type f -exec cat \{} \; | wc -l
       8

real    0m0.015s
user    0m0.004s
sys     0m0.009s
(deeplearning3.5) userdembp:new user$ time find . -name '*.py' -type f -exec cat \{} \; | tqdm | wc -l
9it [00:00, 49998.33it/s]
       8

real    0m0.273s
user    0m0.207s
sys     0m0.053s
(deeplearning3.5) userdembp:new user$ 

此时该目录下就只有一个learning.py文件,里面的代码为:

# conding:utf-8
from tqdm import tqdm
import time

pbar = tqdm(total=100)
for i in range(10):
    time.sleep(0.1)
    pbar.update(10)
pbar.close()

可见除去空行的确是8行

 

注意tqdm通常使用的参数也能够指定:

(deeplearning3.5) userdembp:new user$ time find . -name '*.py' -type f -exec cat \{} \; | tqdm -unit loc --unit_scale --total 8 >> out.log
9.00loc [00:00, 33.6kloc/s]                                                                                                                                              

real    0m0.383s
user    0m0.218s
sys     0m0.076s
(deeplearning3.5) userdembp:new user$ ls
learning.py     out.log
(deeplearning3.5) userdembp:new user$ cat out.log
# conding:utf-8
from tqdm import tqdm
import time

pbar = tqdm(total=100)
for i in range(10):
    time.sleep(0.1)
    pbar.update(10)
pbar.close()

这里即将单位换成loc,然后将得到的内容输入到out.log文件夹中

 

4)文档

class tqdm():
  """
  装饰一个迭代器对象,返回一个表现得就像原来可迭代的迭代器;但是在每次值被请求时就打印一个动态的更新进度条
  """

  def __init__(self, iterable=None, desc=None, total=None, leave=True,
               file=None, ncols=None, mininterval=0.1,
               maxinterval=10.0, miniters=None, ascii=None, disable=False,
               unit='it', unit_scale=False, dynamic_ncols=False,
               smoothing=0.3, bar_format=None, initial=0, position=None,
               postfix=None, unit_divisor=1000):

参数:

  • iterable : iterable, optional:使用一个进度条可迭代地去装饰。留下空白去手动处理更新
  • desc : str, optional:进度条的前缀
  • total : int, optional:期待的迭代数。如果不指定的话,就等价于len(iterable)。如果设置为float("inf")或者万不得已时,只有基本的进程统计会展示出来(无ETA,也无进度条)。如果gui=True,且该参数需要子序列去更新,指定一个初始的大的随机正整数即可,如int(9e9)
  • leave : bool, optional:默认为True,即在迭代的最后保持进度条的所有踪迹,简单来说就是会把进度条的最终形态保留下来。如果为None,则仅在position=0时保留下来,即保留第一个
  • file : io.TextIOWrapper or io.StringIO, optional:指定输出进程信息的地方,默认为sys.stderr。使用file.write(str)和file.flush()方法。对于encoding编码,可见write_bytes
  • ncols : int, optional:整个输出信息的宽度。如果指定,将在动态地重新设置进度条的大小来将其保留在这样的边界中。如果没有指定,就会尝试去使用环境设置的宽度。回退的计量宽度为10,计数器和统计数据的大小没有限制
  • mininterval : float, optional:显示更新间隔[默认值:0.1]秒的最小进度,即更新时间
  • maxinterval : float, optional:显示更新间隔[默认值:10]秒的最大进度。经过长时间的显示更新滞后时会自动调整miniters参数来对应mininterval参数。只有在设置dynamic_miniters=True或显示线程开启时才工作
  • miniters : int, optional:即在迭代中显示更新间隔的最小进度,即更新周期。如果设置为0或dynamic_miniters=True时就会自动调整和mininterval一样大(CPU效率更高,适合紧凑的循环)。如果设置>0,将跳过特定迭代数的显示。能够通过调整这个和mininterval参数去获得高效的循环。如果你的进度不稳定,迭代速度有快有慢(网络、跳过项目等),您应该将miniter设置为1。如果设置了该值,mininterval则会自动设为0
  • ascii : bool or str, optional:如果没有指定或者设置为False,将会使用unicode编码(光滑的块)去填补计量。回退使用的是ASCII字符 ” 123456789#”
  • disable : bool, optional:是否不使用整个进度条的封装,默认为False,即使用封装。如果设置为None,则在non-TTY时不使用
  • unit : str, optional:用来定义每个迭代单元的字符串。默认为"it",表示每个迭代;在下载或解压时,设为"B",代表每个“块”。
  • unit_scale : bool or int or float, optional:如果设置为1或者True,迭代数量就会被自动减少或者重置,且将在国际单位制标准后面添加一个度量前缀(kilo、mega等)[默认:False],其实就是如果迭代数过大,它就会自动在后面加上M、k等字符来表示迭代进度等,比如,在下载进度条的例子中,如果为False,数据大小是按照字节显示,设为True之后转换为Kb、Mb
  • dynamic_ncols : bool, optional:如果设置了,就会不断地更换环境的ncols参数(允许用于窗口大小重置),默认为False
  • smoothing : float, optional:速度估计的指数移动平均平滑因子(在GUI模式中忽略)。范围从0(平均速度)到1(当前/瞬时速度)[默认值:0.3]。
  • bar_format : str, optional:指定自定义进度栏字符串格式。可能会影响性能。(默认值: ‘{l_bar}{bar}{r_bar}’), l_bar = ’{desc}: {percentage:3.0f}%|’和r_bar = ’| {n_fmt}/{total_fmt} [{elapsed}<{remaining}, ‘ ‘{rate_fmt}{postfix}]’ 可能的var为: l_bar, bar, r_bar, n, n_fmt, total, total_fmt, percentage, rate, rate_fmt, rate_noinv, rate_noinv_fmt, rate_inv, rate_inv_fmt, elapsed, elapsed_s, remaining, remaining_s, desc, postfix, unit。注意,如果{desc}后面是空的,那么其后面的“:”将自动删除。
  • initial : int, optional:初始计数器值。在重新启动进度条时有用[默认值:0]。
  • position : int, optional:如果未指定,请指定要自动打印此栏的行偏移量(从0开始)。对于一次管理多个进度条是有用的(如线程)。
  • postfix : dict or *, optional:指定要在进度栏末显示的其他统计信息。如果可能(dict),调用set_postfix(**postfix) 。
  • unit_divisor : float, optional:默认为1000,如果unit_scale=True,则忽略它
  • write_bytes : bool, optional:如果为默认值None和file未指定时,字节将会被写在python2中。如果设置为True,也是写成字节。在其他的情况下则默认写成unicode格式
额外的CLI可选项:
  • delim : chr, optional:分隔字符[默认值:' n ']。使用“0”表示null。注意::在Windows系统中,Python将“n”转换为“rn”。
  • buf_size : int, optional:指定delim时使用的以字节为单位的字符串缓冲区大小[默认值:256]。
  • bytes : bool, optional:如果为真,将计数字节,忽略delim参数,并默认unit_scale为真,unit_divisor为1024,unit为' B '。
  • manpath : str, optional:安装tqdm手册页的目录。
  • log : str, optional:打印的日志信息类别,CRITICAL|FATAL|ERROR|WARN(ING)|[default: ‘INFO’]|DEBUG|NOTSET,默认为INFO
返回:
装饰后的迭代器
class tqdm():
  def update(self, n=1):
      """
      手动更新进度条,对流streams有用,比如读文件
      E.g.:
      >>> t = tqdm(total=filesize) # Initialise
      >>> for current_buffer in stream:
      ...    ...
      ...    t.update(len(current_buffer))
      >>> t.close()
      最后一行高度推荐使用,但是如果``t.update()`` 是在``filesize``即将完全到达和打印时调用的话可能就不需要

      Parameters
      ----------
      n  : int, optional
            添加到迭代内部计数器的增长数[default: 1]
      """

  def close(self):
      """清除(if leave=False)和关闭进度条"""

  def clear(self, nomove=False):
      """清除当前的进度条显示."""

  def refresh(self):
      """强迫更新该进度条的显示Force refresh the display of this bar."""

  def unpause(self):
      """从最新运行时间重启tqdm计时器"""

  def reset(self, total=None):
      """
      为了重复使用,重设为第0次迭代。考虑和``leave=True``设置一起使用

      Parameters
      ----------
      total  : int, optional. 用于新进度条的次数.
      """

  def set_description(self, desc=None, refresh=True):
      """
      设置/修改进度条的描述格式

      Parameters
      ----------
      desc  : str, optional
      refresh  : bool, optional
          Forces refresh [default: True].
      """

  def set_postfix(self, ordered_dict=None, refresh=True, **kwargs):
      """
      设置/修改后缀(additional stats)
      with automatic formatting based on datatype.

      Parameters
      ----------
      ordered_dict  : dict or OrderedDict, optional
      refresh  : bool, optional
          Forces refresh [default: True].
      kwargs  : dict, optional
      """

  @classmethod
  def write(cls, s, file=sys.stdout, end="\n"):
      """通过tqdm打印信息(不覆盖进度条)."""

  @property
  def format_dict(self):
      """给只读权限人员访问的公用API"""

  def display(self, msg=None, pos=None):
      """
      使用``self.sp`` 去展示指定``pos``中的``msg``.

      当继承使用时,要考虑重载该函数 e.g.:
      ``self.some_frontend(**self.format_dict)`` instead of ``self.sp``.

      Parameters
      ----------
      msg  : str, optional. What to display (default: ``repr(self)``).
      pos  : int, optional. Position to ``moveto``
        (default: ``abs(self.pos)``).
      """

def trange(*args, **kwargs):
    """
    tqdm(xrange(*args), **kwargs)函数的缩写
    Python3+版本中使用 range来替换 xrange.
    """

class tqdm_gui(tqdm):
    """Experimental GUI version"""

def tgrange(*args, **kwargs):
    """Experimental GUI version of trange"""

class tqdm_notebook(tqdm):
    """Experimental IPython/Jupyter Notebook widget"""

def tnrange(*args, **kwargs):
    """Experimental IPython/Jupyter Notebook widget version of trange"""

 

Examples and Advanced Usage

"""
# Simple tqdm examples and profiling
# Benchmark
for i in _range(int(1e8)):
    pass
# Basic demo
import tqdm
for i in tqdm.trange(int(1e8)):
    pass
# Some decorations
import tqdm
for i in tqdm.trange(int(1e8), miniters=int(1e6), ascii=True,
                     desc="cool", dynamic_ncols=True):
    pass
# Nested bars
from tqdm import trange
for i in trange(10):
    for j in trange(int(1e7), leave=False, unit_scale=True):
        pass
# Experimental GUI demo
import tqdm
for i in tqdm.tgrange(int(1e8)):
    pass
# Comparison to https://code.google.com/p/python-progressbar/
try:
    from progressbar.progressbar import ProgressBar
except ImportError:
    pass
else:
    for i in ProgressBar()(_range(int(1e8))):
        pass
# Dynamic miniters benchmark
from tqdm import trange
for i in trange(int(1e8), miniters=None, mininterval=0.1, smoothing=0):
    pass
# Fixed miniters benchmark
from tqdm import trange
for i in trange(int(1e8), miniters=4500000, mininterval=0.1, smoothing=0):
    pass
"""

from time import sleep
from timeit import timeit
import re

# Simple demo
from tqdm import trange
for i in trange(16, leave=True):
    sleep(0.1)

# Profiling/overhead tests
stmts = filter(None, re.split(r'\n\s*#.*?\n', __doc__))
for s in stmts:
    print(s.replace('import tqdm\n', ''))
    print(timeit(stmt='try:\n\t_range = xrange'
                 '\nexcept:\n\t_range = range\n' + s, number=1), 'seconds')

一个个分析:

"""
# Simple tqdm examples and profiling
# Benchmark
for i in _range(int(1e8)):
    pass

"""

from time import sleep
from timeit import timeit
import re

# Simple demo
from tqdm import trange
for i in trange(16, leave=True):
    sleep(0.1)

# Profiling/overhead tests
stmts = filter(None, re.split(r'\n\s*#.*?\n', __doc__))
for s in stmts:
    print(s.replace('import tqdm\n', ''))
    print(timeit(stmt='try:\n\t_range = xrange'
                 '\nexcept:\n\t_range = range\n' + s, number=1), 'seconds')

返回:

100%|██████████| 16/16 [00:01<00:00,  9.59it/s]
# Benchmark
for i in _range(int(1e8)):
    pass


2.328720851000071 seconds

 

下面都一样,仅运行一个来分析学习

1)

"""
# Simple tqdm examples and profiling
# Basic demo
import tqdm
for i in tqdm.trange(int(1e8)):
    pass

"""

返回:

100%|██████████| 16/16 [00:01<00:00,  9.65it/s]
  0%|          | 301598/100000000 [00:00<00:33, 3015975.69it/s]
# Basic demo
for i in tqdm.trange(int(1e8)):
    pass


100%|██████████| 100000000/100000000 [00:18<00:00, 5407942.99it/s]
18.4932925789999 seconds

 

2)

"""
# Simple tqdm examples and profiling
# Some decorations
import tqdm
for i in tqdm.trange(int(1e8), miniters=int(1e6), ascii=True,
                     desc="cool", dynamic_ncols=True):
    pass

"""

中间:

 返回:

100%|██████████| 16/16 [00:01<00:00,  9.71it/s]
cool:   0%|          | 0/100000000 [00:00<?, ?it/s]
# Some decorations
for i in tqdm.trange(int(1e8), miniters=int(1e6), ascii=True,
                     desc="cool", dynamic_ncols=True):
    pass


cool: 100%|##########| 100000000/100000000 [00:17<00:00, 5650878.97it/s]
17.699349756000174 seconds

 

3)

"""
# Simple tqdm examples and profiling
# Nested bars
from tqdm import trange
for i in trange(2): 
    for j in trange(int(1e7), leave=False, unit_scale=True):
        pass

"""

返回:

100%|██████████| 16/16 [00:01<00:00,  9.76it/s]
  0%|          | 0/2 [00:00<?, ?it/s]
  0%|          | 0.00/10.0M [00:00<?, ?it/s]
  3%|▎         | 327k/10.0M [00:00<00:02, 3.27Mit/s]
# Nested bars
from tqdm import trange
for i in trange(2):
    for j in trange(int(1e7), leave=False, unit_scale=True):
        pass



  7%|▋         | 667k/10.0M [00:00<00:02, 3.31Mit/s]
 10%|█         | 1.04M/10.0M [00:00<00:02, 3.43Mit/s]
 13%|█▎        | 1.34M/10.0M [00:00<00:02, 3.27Mit/s]
 17%|█▋        | 1.70M/10.0M [00:00<00:02, 3.38Mit/s]
 21%|██        | 2.11M/10.0M [00:00<00:02, 3.56Mit/s]
 25%|██▌       | 2.55M/10.0M [00:00<00:01, 3.77Mit/s]
 30%|██▉       | 2.99M/10.0M [00:00<00:01, 3.93Mit/s]
 34%|███▍      | 3.44M/10.0M [00:00<00:01, 4.11Mit/s]
 39%|███▉      | 3.91M/10.0M [00:01<00:01, 4.27Mit/s]
 44%|████▍     | 4.39M/10.0M [00:01<00:01, 4.41Mit/s]
 49%|████▉     | 4.88M/10.0M [00:01<00:01, 4.54Mit/s]
 54%|█████▍    | 5.38M/10.0M [00:01<00:00, 4.67Mit/s]
 59%|█████▊    | 5.87M/10.0M [00:01<00:00, 4.74Mit/s]
 64%|██████▎   | 6.35M/10.0M [00:01<00:00, 4.77Mit/s]
 68%|██████▊   | 6.83M/10.0M [00:01<00:00, 4.76Mit/s]
 73%|███████▎  | 7.31M/10.0M [00:01<00:00, 4.64Mit/s]
 78%|███████▊  | 7.77M/10.0M [00:01<00:00, 4.48Mit/s]
 82%|████████▏ | 8.22M/10.0M [00:01<00:00, 4.44Mit/s]
 87%|████████▋ | 8.71M/10.0M [00:02<00:00, 4.55Mit/s]
 92%|█████████▏| 9.20M/10.0M [00:02<00:00, 4.67Mit/s]
 97%|█████████▋| 9.68M/10.0M [00:02<00:00, 4.69Mit/s]
 50%|█████     | 1/2 [00:02<00:02,  2.30s/it]        
  0%|          | 0.00/10.0M [00:00<?, ?it/s]
  3%|▎         | 296k/10.0M [00:00<00:03, 2.96Mit/s]
  6%|▌         | 586k/10.0M [00:00<00:03, 2.94Mit/s]
  9%|▉         | 896k/10.0M [00:00<00:03, 2.99Mit/s]
 12%|█▏        | 1.24M/10.0M [00:00<00:02, 3.10Mit/s]
 16%|█▌        | 1.59M/10.0M [00:00<00:02, 3.21Mit/s]
 19%|█▉        | 1.94M/10.0M [00:00<00:02, 3.31Mit/s]
 23%|██▎       | 2.33M/10.0M [00:00<00:02, 3.46Mit/s]
 27%|██▋       | 2.71M/10.0M [00:00<00:02, 3.57Mit/s]
 31%|███       | 3.12M/10.0M [00:00<00:01, 3.69Mit/s]
 35%|███▌      | 3.53M/10.0M [00:01<00:01, 3.81Mit/s]
 39%|███▉      | 3.93M/10.0M [00:01<00:01, 3.88Mit/s]
 44%|████▍     | 4.40M/10.0M [00:01<00:01, 4.08Mit/s]
 49%|████▉     | 4.88M/10.0M [00:01<00:01, 4.27Mit/s]
 54%|█████▍    | 5.38M/10.0M [00:01<00:01, 4.48Mit/s]
 59%|█████▊    | 5.87M/10.0M [00:01<00:00, 4.60Mit/s]
 64%|██████▍   | 6.38M/10.0M [00:01<00:00, 4.72Mit/s]
 69%|██████▉   | 6.90M/10.0M [00:01<00:00, 4.85Mit/s]
 74%|███████▍  | 7.41M/10.0M [00:01<00:00, 4.93Mit/s]
 79%|███████▉  | 7.92M/10.0M [00:01<00:00, 4.98Mit/s]
 84%|████████▍ | 8.42M/10.0M [00:02<00:00, 4.74Mit/s]
 89%|████████▉ | 8.90M/10.0M [00:02<00:00, 4.77Mit/s]
 94%|█████████▍| 9.40M/10.0M [00:02<00:00, 4.84Mit/s]
 99%|█████████▉| 9.93M/10.0M [00:02<00:00, 4.95Mit/s]
100%|██████████| 2/2 [00:04<00:00,  2.32s/it]        
4.642330375000256 seconds

⚠️这里返回[00:00<00:03, 2.96Mit/s]中前面的00:00表示已用时间,以秒为单位,所以在1秒前都为0,<后面的00:03表示剩余需要花的时间,2.96Mit/s表示速度

 

删掉参数unit_scale=True:

返回可见设置时使用M单位简化数字:

100%|██████████| 16/16 [00:01<00:00,  9.64it/s]
  0%|          | 0/1 [00:00<?, ?it/s]
  0%|          | 0/10000000 [00:00<?, ?it/s]
  3%|▎         | 277015/10000000 [00:00<00:03, 2770126.22it/s]
# Nested bars
from tqdm import trange
for i in trange(1): 
    for j in trange(int(1e7), leave=False):
        pass



  6%|▌         | 558583/10000000 [00:00<00:03, 2783635.65it/s]
  9%|▉         | 895786/10000000 [00:00<00:03, 2937395.56it/s]
 13%|█▎        | 1258399/10000000 [00:00<00:02, 3114883.50it/s]
 17%|█▋        | 1667463/10000000 [00:00<00:02, 3354857.99it/s]
 21%|██        | 2105227/10000000 [00:00<00:02, 3607718.69it/s]
 26%|██▌       | 2551042/10000000 [00:00<00:01, 3826706.29it/s]
 30%|███       | 3028044/10000000 [00:00<00:01, 4068052.94it/s]
 35%|███▌      | 3502923/10000000 [00:00<00:01, 4250850.87it/s]
 40%|███▉      | 3975152/10000000 [00:01<00:01, 4382092.05it/s]
 44%|████▍     | 4444320/10000000 [00:01<00:01, 4470580.81it/s]
 49%|████▉     | 4913953/10000000 [00:01<00:01, 4535991.51it/s]
 54%|█████▍    | 5412819/10000000 [00:01<00:00, 4662832.67it/s]
 59%|█████▉    | 5903458/10000000 [00:01<00:00, 4733320.55it/s]
 64%|██████▍   | 6407480/10000000 [00:01<00:00, 4821381.19it/s]
 69%|██████▉   | 6890932/10000000 [00:01<00:00, 4732373.17it/s]
 74%|███████▎  | 7365457/10000000 [00:01<00:00, 4589660.71it/s]
 78%|███████▊  | 7828722/10000000 [00:01<00:00, 4602468.26it/s]
 83%|████████▎ | 8290265/10000000 [00:01<00:00, 4587601.91it/s]
 88%|████████▊ | 8799822/10000000 [00:02<00:00, 4729019.14it/s]
 93%|█████████▎| 9297792/10000000 [00:02<00:00, 4801530.70it/s]
 98%|█████████▊| 9806813/10000000 [00:02<00:00, 4884621.49it/s]
100%|██████████| 1/1 [00:02<00:00,  2.26s/it]                  
2.264081185000123 seconds

 

设置leave=True,返回:

100%|██████████| 16/16 [00:01<00:00,  9.66it/s]
  0%|          | 0/1 [00:00<?, ?it/s]
  0%|          | 0/10000000 [00:00<?, ?it/s]
  3%|▎         | 322630/10000000 [00:00<00:02, 3226280.00it/s]
# Nested bars
from tqdm import trange
for i in trange(1): 
    for j in trange(int(1e7), leave=True):
        pass



  7%|▋         | 672600/10000000 [00:00<00:02, 3303711.10it/s]
 11%|█         | 1057128/10000000 [00:00<00:02, 3449449.52it/s]
 14%|█▍        | 1427037/10000000 [00:00<00:02, 3520729.15it/s]
 18%|█▊        | 1832741/10000000 [00:00<00:02, 3666110.82it/s]
 22%|██▏       | 2244986/10000000 [00:00<00:02, 3792038.55it/s]
 27%|██▋       | 2691460/10000000 [00:00<00:01, 3971547.54it/s]
 32%|███▏      | 3158486/10000000 [00:00<00:01, 4158176.06it/s]
 36%|███▋      | 3644204/10000000 [00:00<00:01, 4345786.38it/s]
 41%|████      | 4122465/10000000 [00:01<00:01, 4468208.17it/s]
 46%|████▌     | 4612764/10000000 [00:01<00:01, 4590323.02it/s]
 51%|█████     | 5111718/10000000 [00:01<00:01, 4703203.98it/s]
 56%|█████▌    | 5608081/10000000 [00:01<00:00, 4778414.54it/s]
 61%|██████    | 6086716/10000000 [00:01<00:00, 4780780.12it/s]
 66%|██████▌   | 6564640/10000000 [00:01<00:00, 4667924.67it/s]
 70%|███████   | 7031914/10000000 [00:01<00:00, 4532180.69it/s]
 75%|███████▌  | 7521866/10000000 [00:01<00:00, 4636454.48it/s]
 80%|████████  | 8035404/10000000 [00:01<00:00, 4775645.33it/s]
 86%|████████▌ | 8551806/10000000 [00:01<00:00, 4885870.39it/s]
 91%|█████████ | 9066446/10000000 [00:02<00:00, 4961214.82it/s]
100%|██████████| 10000000/10000000 [00:02<00:00, 4552905.40it/s][A
100%|██████████| 1/1 [00:02<00:00,  2.20s/it]
2.2038861539999743 seconds

不同在于内部迭代保存最终的结果,即:

100%|██████████| 10000000/10000000 [00:02<00:00, 4552905.40it/s]

 

4)

"""
# Simple tqdm examples and profiling
# Experimental GUI demo
import tqdm
for i in tqdm.tgrange(int(1e8)):
    pass

"""

返回:

100%|██████████| 16/16 [00:01<00:00,  9.69it/s]
# Experimental GUI demo
for i in tqdm.tgrange(int(1e8)):
    pass

19.253753004999908 seconds

图为:

 

 5)

"""
# Simple tqdm examples and profiling
# Comparison to https://code.google.com/p/python-progressbar/
try:
    from progressbar.progressbar import ProgressBar
except ImportError:
    pass
else:
    for i in ProgressBar()(_range(int(1e8))):
        pass

"""

返回:

100%|██████████| 16/16 [00:01<00:00,  9.64it/s]
# Comparison to https://code.google.com/p/python-progressbar/
try:
    from progressbar.progressbar import ProgressBar
except ImportError:
    pass
else:
    for i in ProgressBar()(_range(int(1e8))):
        pass


0.0015016719999039196 seconds

 

6)

"""
# Simple tqdm examples and profiling
# Dynamic miniters benchmark
from tqdm import trange
for i in trange(int(1e8), miniters=None, mininterval=0.1, smoothing=0):
    pass

"""

最终:

100%|██████████| 16/16 [00:01<00:00,  9.65it/s]
  0%|          | 313552/100000000 [00:00<00:31, 3134484.22it/s]
# Dynamic miniters benchmark
from tqdm import trange
for i in trange(int(1e8), miniters=None, mininterval=0.1, smoothing=0):
    pass


100%|██████████| 100000000/100000000 [00:16<00:00, 5960460.94it/s]
16.779653078000138 seconds

即mininterval=0.1秒后更新进度栏中的进度

 

如果设置为miniters=2, mininterval=0

"""
# Simple tqdm examples and profiling
# Dynamic miniters benchmark
from tqdm import trange
for i in trange(int(1e8), miniters=2, mininterval=0):
    pass

"""

返回为:

 0%|          | 0/100000000 [00:00<?, ?it/s]
  0%|          | 2/100000000 [00:00<06:45, 246723.76it/s]
  0%|          | 4/100000000 [00:00<6:07:28, 4535.36it/s]
  0%|          | 6/100000000 [00:00<15:44:50, 1763.97it/s]
  0%|          | 8/100000000 [00:00<19:05:36, 1454.82it/s]
...

可见每两个迭代就更新一次

 

如果同时设置了这两个参数miniters=2, mininterval=1,以大的设置的时间为主。如下面的这个设置miniters仅为2,花的时间少,mininterval为1秒,所以以1秒间隔显示为主,忽略miniters设置:

  0%|          | 0/100000000 [00:00<?, ?it/s]
# Dynamic miniters benchmark
from tqdm import trange
for i in trange(int(1e8), miniters=2, mininterval=1):
    pass




  3%|▎         | 3127793/100000000 [00:01<00:30, 3127793.00it/s]

  6%|▌         | 5865282/100000000 [00:02<00:31, 2999494.96it/s]

  9%|▉         | 9147057/100000000 [00:03<00:29, 3078945.08it/s]

 12%|█▏        | 12443754/100000000 [00:04<00:27, 3141189.20it/s]
...

注意:返回[00:01<00:30, 3127793.00it/s]中的00:01表示1秒

 

如果设置为miniters=4500000, mininterval=0.1,4500000个间隔花的时间更长,所以以迭代数为主:

  0%|          | 0/100000000 [00:00<?, ?it/s]
# Fixed miniters benchmark
from tqdm import trange
for i in trange(int(1e8), miniters=4500000, mininterval=0.1, smoothing=0):
    pass




  4%|▍         | 4500000/100000000 [00:00<00:16, 5715229.42it/s]

  9%|▉         | 9000000/100000000 [00:01<00:16, 5545180.93it/s]

 14%|█▎        | 13500000/100000000 [00:02<00:15, 5635364.34it/s]

 18%|█▊        | 18000000/100000000 [00:03<00:14, 5656277.70it/s]

 22%|██▎       | 22500000/100000000 [00:03<00:13, 5729412.82it/s]

 27%|██▋       | 27000000/100000000 [00:04<00:12, 5779243.27it/s]

 32%|███▏      | 31500000/100000000 [00:05<00:11, 5820303.28it/s]

 36%|███▌      | 36000000/100000000 [00:06<00:10, 5851854.45it/s]

 40%|████      | 40500000/100000000 [00:06<00:10, 5873663.41it/s]

 45%|████▌     | 45000000/100000000 [00:07<00:09, 5902913.08it/s]
...

 

Description and additional stats

定制信息可以通过设置desc和postfix参数来动态显示和更新在tqdm进度栏上:

from tqdm import trange
from random import random, randint
from time import sleep

with trange(10) as t:
    for i in t:
        # 描述将显示在左边
        t.set_description('GEN %i' % i)
        # 后缀将显示在右边,根据参数的数据类型自动格式化
        t.set_postfix(loss=random(), gen=randint(1,999), str='h',
                      lst=[1, 2])
        sleep(0.1)

with tqdm(total=10, bar_format="{postfix[0]} {postfix[1][value]:>8.2g}",
          postfix=["Batch", dict(value=0)]) as t:
    for i in range(10):
        sleep(0.1)
        t.postfix[1]["value"] = i / 2
        t.update()

返回:

GEN 9: 100%|██████████| 10/10 [00:01<00:00,  9.42it/s, gen=356, loss=0.806, lst=[1, 2], str=h]
Batch      4.5

记得在bar_format字符串中使用{postfix[...]}来指向:

  • postfix需要在兼容格式中作为初始参数传递
  • 如果postfix是类字典对象,将自动转换为一个字符串。为了防止该行为,在字典中键不是字符串的地方加入一个额外的项,即上面postfix=["Batch", dict(value=0)]中的value=0

额外的bar_format参数也能够通过复写format_dict参数来定义,进度栏本身可以用ascii码修改:

from tqdm import tqdm
class TqdmExtraFormat(tqdm):
    """Provides a `total_time` format parameter"""
    @property
    def format_dict(self):
        d = super(TqdmExtraFormat, self).format_dict
#d["total"]表示总迭代数,d["n"]表示当前为第几轮迭代 print(d[
"elapsed"], d["total"], d["n"]) total_time = d["elapsed"] * (d["total"] or 0) / max(d["n"], 1) d.update(total_time=self.format_interval(total_time) + " in total") return d for i in TqdmExtraFormat( range(10), ascii=" .oO0", bar_format="{total_time}: {percentage:.0f}%|{bar}{r_bar}"): sleep(0.25) print(i)

返回:

00:00 in total: 0%|          | 0/10 [00:00<?, ?it/s]
0 10 0
00:02 in total: 10%|0         | 1/10 [00:00<00:02,  3.92it/s]
0
0.2551310062408447 10 1
00:02 in total: 20%|00        | 2/10 [00:00<00:02,  3.92it/s]
1
0.5111739635467529 10 2
00:02 in total: 30%|000       | 3/10 [00:00<00:01,  3.91it/s]
2
0.7674551010131836 10 3
00:02 in total: 40%|0000      | 4/10 [00:01<00:01,  3.92it/s]
3
1.0219080448150635 10 4
00:02 in total: 50%|00000     | 5/10 [00:01<00:01,  3.93it/s]
4
1.2738640308380127 10 5
00:02 in total: 60%|000000    | 6/10 [00:01<00:01,  3.94it/s]
5
1.525794267654419 10 6
00:02 in total: 70%|0000000   | 7/10 [00:01<00:00,  3.94it/s]
6
1.7809131145477295 10 7
00:02 in total: 80%|00000000  | 8/10 [00:02<00:00,  3.94it/s]
7
2.035114049911499 10 8
00:02 in total: 90%|000000000 | 9/10 [00:02<00:00,  3.93it/s]
8
2.2901201248168945 10 9
00:02 in total: 100%|0000000000| 10/10 [00:02<00:00,  3.93it/s]
9
2.543692111968994 10 10
2.544473886489868 10 10

参数ascii=" .oO0"指定使用0来填补进度条

参数bar_format="{total_time}: {percentage:.0f}%|{bar}{r_bar}"定义的值total_time即覆写format_dict中定义的total_time值,即输出的00:00 in total{percentage:.0f}%即表示进度的百分比,小数位值不显示,设为0;所以l_bar = {total_time}: {percentage:.0f}%|,{bar}{r_bar}没有定义,即表示使用默认定义

 

注意{bar}还支持格式说明符[width][type]

  • width:
  1. 未指定(默认值):自动填充ncols
  2. 设置的是整数且int >= 0: 即覆盖ncols逻辑的固定宽度
  3. 设置的是整数且int < 0: 则使用默认值减去该值
  • type:
  1. a : ascii (覆写即等价于ascii=True)
  2. u : unicode(覆写 ascii=False)
  3. b : blank(覆写 ascii=" ")

这意味着可以使用以下方法创建具有右对齐文本的固定栏:bar_format="{l_bar}{bar:10}|{bar:-10b}right-justified"

 

Nested progress bars

tqdm支持嵌套的进度条。这里有一个例子:

from tqdm import trange
from time import sleep

for i in trange(4, desc='1st loop'):
    for j in trange(5, desc='2nd loop'):
        for k in trange(20, desc='3nd loop', leave=False):
            sleep(0.01)

返回:

1st loop:   0%|          | 0/4 [00:00<?, ?it/s]
2nd loop:   0%|          | 0/5 [00:00<?, ?it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 90.89it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 90.62it/s]

                                                         
2nd loop:  20%|██        | 1/5 [00:00<00:00,  4.39it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  45%|████▌     | 9/20 [00:00<00:00, 86.21it/s]

3nd loop:  90%|█████████ | 18/20 [00:00<00:00, 85.41it/s]

                                                         
2nd loop:  40%|████      | 2/5 [00:00<00:00,  4.29it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 95.65it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 93.32it/s]

                                                         
2nd loop:  60%|██████    | 3/5 [00:00<00:00,  4.31it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 92.64it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 91.18it/s]

                                                         
2nd loop:  80%|████████  | 4/5 [00:00<00:00,  4.32it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 94.50it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 91.41it/s]

                                                         
2nd loop: 100%|██████████| 5/5 [00:01<00:00,  4.27it/s]
1st loop:  25%|██▌       | 1/4 [00:01<00:03,  1.17s/it]
2nd loop:   0%|          | 0/5 [00:00<?, ?it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 90.59it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 89.93it/s]

                                                         
2nd loop:  20%|██        | 1/5 [00:00<00:00,  4.33it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 91.40it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 90.54it/s]

                                                         
2nd loop:  40%|████      | 2/5 [00:00<00:00,  4.32it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 93.82it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 91.93it/s]

                                                         
2nd loop:  60%|██████    | 3/5 [00:00<00:00,  4.34it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 96.33it/s]

3nd loop: 100%|██████████| 20/20 [00:00<00:00, 94.51it/s]

                                                         
2nd loop:  80%|████████  | 4/5 [00:00<00:00,  4.37it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 93.01it/s]

3nd loop: 100%|██████████| 20/20 [00:00<00:00, 92.52it/s]

                                                         
2nd loop: 100%|██████████| 5/5 [00:01<00:00,  4.36it/s]
1st loop:  50%|█████     | 2/4 [00:02<00:02,  1.17s/it]
2nd loop:   0%|          | 0/5 [00:00<?, ?it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 92.09it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 90.62it/s]

                                                         
2nd loop:  20%|██        | 1/5 [00:00<00:00,  4.33it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 90.28it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 89.40it/s]

                                                         
2nd loop:  40%|████      | 2/5 [00:00<00:00,  4.31it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 94.83it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 92.97it/s]

                                                         
2nd loop:  60%|██████    | 3/5 [00:00<00:00,  4.32it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 90.53it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 90.02it/s]

                                                         
2nd loop:  80%|████████  | 4/5 [00:00<00:00,  4.33it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 91.51it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 89.57it/s]

                                                         
2nd loop: 100%|██████████| 5/5 [00:01<00:00,  4.29it/s]
1st loop:  75%|███████▌  | 3/4 [00:03<00:01,  1.17s/it]
2nd loop:   0%|          | 0/5 [00:00<?, ?it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 94.66it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 92.52it/s]

                                                         
2nd loop:  20%|██        | 1/5 [00:00<00:00,  4.41it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  45%|████▌     | 9/20 [00:00<00:00, 88.28it/s]

3nd loop:  95%|█████████▌| 19/20 [00:00<00:00, 88.91it/s]

                                                         
2nd loop:  40%|████      | 2/5 [00:00<00:00,  4.36it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  45%|████▌     | 9/20 [00:00<00:00, 86.31it/s]

3nd loop:  90%|█████████ | 18/20 [00:00<00:00, 86.96it/s]

                                                         
2nd loop:  60%|██████    | 3/5 [00:00<00:00,  4.31it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  45%|████▌     | 9/20 [00:00<00:00, 89.50it/s]

3nd loop:  90%|█████████ | 18/20 [00:00<00:00, 87.95it/s]

                                                         
2nd loop:  80%|████████  | 4/5 [00:00<00:00,  4.27it/s]

3nd loop:   0%|          | 0/20 [00:00<?, ?it/s]

3nd loop:  50%|█████     | 10/20 [00:00<00:00, 92.30it/s]

3nd loop: 100%|██████████| 20/20 [00:00<00:00, 91.61it/s]

                                                         
2nd loop: 100%|██████████| 5/5 [00:01<00:00,  4.26it/s]
1st loop: 100%|██████████| 4/4 [00:04<00:00,  1.17s/it]
View Code

参数desc='3nd loop'指定输出的l_bar的内容,即前缀

在Windows上,如果可以的话,colorama将用于保持嵌套条在各自的行上。
对于手动控制定位(例如多线程使用),可以指定位置=n,其中最外层的栏位n=0,下一栏位n=1,以此类推:

from time import sleep
from tqdm import trange, tqdm
from multiprocessing import Pool, freeze_support, RLock

L = list(range(3))

def progresser(n):
    interval = 0.001 / (n + 2)
    total = 5000
    # {:<04.2}表示左对齐,数字总共4位,其中小数两位
    text = "#{}, est. {:<04.2}s".format(n, interval * total)
    for i in trange(total, desc=text, position=n):
        sleep(interval)

if __name__ == '__main__':
    freeze_support()  # for Windows support
    p = Pool(len(L), # 同时开启3个进程
             # again, for Windows support
             initializer=tqdm.set_lock, initargs=(RLock(),))
    p.map(progresser, L)
    print("\n" * (len(L) - 2)) #换行

返回:

#0, est. 2.50s:   0%|          | 0/5000 [00:00<?, ?it/s]
#1, est. 1.70s:   0%|          | 0/5000 [00:00<?, ?it/s]

#0, est. 2.50s:   4%|▎         | 175/5000 [00:00<00:02, 1743.72it/s]
#1, est. 1.70s:   5%|▌         | 258/5000 [00:00<00:01, 2577.38it/s]

#0, est. 2.50s:   7%|▋         | 346/5000 [00:00<00:02, 1731.96it/s]
#1, est. 1.70s:  10%|█         | 500/5000 [00:00<00:01, 2525.19it/s]

#0, est. 2.50s:  10%|█         | 515/5000 [00:00<00:02, 1717.89it/s]
#1, est. 1.70s:  15%|█▍        | 729/5000 [00:00<00:01, 2447.84it/s]

#0, est. 2.50s:  14%|█▎        | 685/5000 [00:00<00:02, 1712.16it/s]
#1, est. 1.70s:  19%|█▉        | 959/5000 [00:00<00:01, 2401.48it/s]

#0, est. 2.50s:  17%|█▋        | 855/5000 [00:00<00:02, 1707.39it/s]]
#1, est. 1.70s:  24%|██▍       | 1200/5000 [00:00<00:01, 2403.36it/s]

#0, est. 2.50s:  21%|██        | 1026/5000 [00:00<00:02, 1706.94it/s]
#1, est. 1.70s:  29%|██▊       | 1435/5000 [00:00<00:01, 2385.71it/s]

#0, est. 2.50s:  24%|██▍       | 1198/5000 [00:00<00:02, 1709.67it/s]
#1, est. 1.70s:  34%|███▎      | 1675/5000 [00:00<00:01, 2389.13it/s]

#0, est. 2.50s:  27%|██▋       | 1369/5000 [00:00<00:02, 1707.61it/s]
#1, est. 1.70s:  38%|███▊      | 1914/5000 [00:00<00:01, 2387.64it/s]

#0, est. 2.50s:  31%|███       | 1541/5000 [00:00<00:02, 1709.89it/s]
#1, est. 1.70s:  43%|████▎     | 2153/5000 [00:00<00:01, 2388.28it/s]

#0, est. 2.50s:  34%|███▍      | 1712/5000 [00:01<00:01, 1708.18it/s]
#1, est. 1.70s:  48%|████▊     | 2392/5000 [00:01<00:01, 2387.33it/s]

#0, est. 2.50s:  38%|███▊      | 1882/5000 [00:01<00:01, 1704.82it/s]
#1, est. 1.70s:  53%|█████▎    | 2632/5000 [00:01<00:00, 2388.09it/s]

#0, est. 2.50s:  41%|████      | 2052/5000 [00:01<00:01, 1701.67it/s]
#1, est. 1.70s:  57%|█████▋    | 2867/5000 [00:01<00:00, 2376.26it/s]

#0, est. 2.50s:  44%|████▍     | 2224/5000 [00:01<00:01, 1704.14it/s]
#1, est. 1.70s:  62%|██████▏   | 3106/5000 [00:01<00:00, 2379.52it/s]

#0, est. 2.50s:  48%|████▊     | 2395/5000 [00:01<00:01, 1702.96it/s]
#1, est. 1.70s:  67%|██████▋   | 3342/5000 [00:01<00:00, 2364.88it/s]

#0, est. 2.50s:  51%|█████▏    | 2566/5000 [00:01<00:01, 1703.43it/s]
#1, est. 1.70s:  72%|███████▏  | 3579/5000 [00:01<00:00, 2365.95it/s]

#0, est. 2.50s:  55%|█████▍    | 2736/5000 [00:01<00:01, 1702.05it/s]
#1, est. 1.70s:  76%|███████▋  | 3817/5000 [00:01<00:00, 2368.33it/s]

#2, est. 1.20s: 100%|██████████| 5000/5000 [00:01<00:00, 3076.41it/s]
#0, est. 2.50s:  58%|█████▊    | 2906/5000 [00:01<00:01, 1695.95it/s]
#0, est. 2.50s:  62%|██████▏   | 3076/5000 [00:01<00:01, 1688.59it/s]
#0, est. 2.50s:  65%|██████▍   | 3245/5000 [00:01<00:01, 1687.35it/s]
#0, est. 2.50s:  68%|██████▊   | 3414/5000 [00:02<00:00, 1680.56it/s]
#0, est. 2.50s:  72%|███████▏  | 3582/5000 [00:02<00:00, 1674.84it/s]
#1, est. 1.70s: 100%|██████████| 5000/5000 [00:02<00:00, 2354.49it/s]
#0, est. 2.50s: 100%|██████████| 5000/5000 [00:02<00:00, 1672.28it/s]
View Code

 

Hooks and callbacks

tqdm可以很容易地支持回调/钩子和手动更新。下面是urllib的一个例子:

urllib.urlretrieve documentation

如果存在,钩子函数将在网络连接建立时调用一次,之后在读取每个块之后调用一次。

钩子将传递三个参数:到目前为止传输的块数、块大小(以字节为单位)和文件的总大小。

报错:

module 'urllib' has no attribute 'urlretrieve'

原因是python2 与python3的urllib不同在与python3要加上.request,更改后为:

import urllib, os
from tqdm import tqdm

class TqdmUpTo(tqdm):
    """Provides `update_to(n)` which uses `tqdm.update(delta_n)`."""
    def update_to(self, b=1, bsize=1, tsize=None):
        """
        b  : int, optional
            Number of blocks transferred so far [default: 1].
        bsize  : int, optional
            Size of each block (in tqdm units) [default: 1].
        tsize  : int, optional
            Total size (in tqdm units). If [default: None] remains unchanged.
        """
        if tsize is not None:
            self.total = tsize
        self.update(b * bsize - self.n)  # will also set self.n = b * bsize

eg_link = "https://caspersci.uk.to/matryoshka.zip"
with TqdmUpTo(unit='B', unit_scale=True, miniters=1,
              desc=eg_link.split('/')[-1]) as t:  # all optional kwargs
    urllib.request.urlretrieve(eg_link, filename=os.devnull,
                       reporthook=t.update_to, data=None)

最终为:

matryoshka.zip: 262kB [00:03, 77.4kB/s]  

灵感来自 twine#242。对examples/tqdm_wget.py进行函数替代。
当迭代速度存在较大差异时,建议使用miniter =1(例如,通过不完整的连接下载文件)。

 

Pandas Integration

受广大要求求,我们增加了对panda的支持——下面是DataFrame.progress_apply和DataFrameGroupBy.progress_apply的一个例子:

出错:

ModuleNotFoundError: No module named 'pandas'

解决:

(deeplearning) userdeMacBook-Pro:~ user$ conda install -n deeplearning pandas

更改后例子:

import pandas as pd
import numpy as np
from tqdm import tqdm

df = pd.DataFrame(np.random.randint(0, 100, (100000, 6)))

# Register `pandas.progress_apply` and `pandas.Series.map_apply` with `tqdm`
# (can use `tqdm_gui`, `tqdm_notebook`, optional kwargs, etc.)
tqdm.pandas(desc="my bar!")

# Now you can use `progress_apply` instead of `apply`
# and `progress_map` instead of `map`
df.progress_apply(lambda x: x**2)
# can also groupby:
# df.groupby(0).progress_apply(lambda x: x**2)

返回:

/anaconda3/envs/deeplearning/bin/src/tqdm/tqdm/_tqdm.py:634: FutureWarning: The Panel class is removed from pandas. Accessing it from the top-level namespace will also be removed in the next version
  from pandas import Panel
my bar!: 100%|██████████| 6/6 [00:00<00:00, 265.34it/s]

数据大小为(100000, 6),从[0,100)中随机取值对其赋初值,然后求平方:

如果您对它的工作原理(以及如何为您自己的回调修改它)感兴趣,请参阅examples文件夹或导入模块并运行help()。

 

IPython/Jupyter Integration

IPython/Jupyter通过tqdm_notebook子模块支持:

出错:

IntProgress not found. Please update jupyter and ipywidgets.

解决参考https://ipywidgets.readthedocs.io/en/stable/user_install.html

我的操作为:

(deeplearning) userdeMacBook-Pro:~ user$ conda install -n deeplearning ipywidgets

例子:

from tqdm import tnrange, tqdm_notebook
from time import sleep

for i in tnrange(3, desc='1st loop'):
    for j in tqdm_notebook(range(100), desc='2nd loop'):
        sleep(0.01)

返回:

 

除了tqdm特性外,子模块还提供了一个本机Jupyter小部件(兼容IPython v1-v4和Jupyter),完全工作的嵌套条和颜色提示(蓝色:normal、绿色:completed、红色:error/interrupt、淡蓝色:no ETA);如下显示

from tqdm import tnrange, tqdm_notebook
from time import sleep

for i in tqdm_notebook(range(3), desc='1st loop'):
    for j in tqdm_notebook(range(100), desc='2nd loop'):
        sleep(0.01)

过程为:

 

 最终为:

如果添加参数leave=True:

from tqdm import tnrange, tqdm_notebook
from time import sleep

for i in tqdm_notebook(range(3), desc='1st loop'):
    for j in tqdm_notebook(range(100), desc='2nd loop', leave=False):
        sleep(0.01)

则最后只会留下外层嵌套的结果:

 

如果中间点击停止按钮,则标明红色:

 

 tqdm也可以通过使用autonotebook子模块自动选择控制台或笔记本版本:

from tqdm.autonotebook import tqdm
tqdm.pandas()

返回:

/anaconda3/envs/deeplearning/bin/src/tqdm/tqdm/autonotebook/__init__.py:18: TqdmExperimentalWarning: Using `tqdm.autonotebook.tqdm` in notebook mode. Use `tqdm.tqdm` instead to force console mode (e.g. in jupyter console)
  " (e.g. in jupyter console)", TqdmExperimentalWarning)

注意,如果运行在一个笔记本上,这将发出tqdmexperimental警告,因为其不可能区分jupyter notebook和jupyter console。使用auto而不是autonotebook来抑制这个警告。

 

Custom Integration

可以继承tqdm来创建自定义回调(如上面的TqdmUpTo示例)或自定义前端(例如GUIs,如笔记本或绘图包)。在后一种情况下要做的有:

  • 在def __init__()中调用super().__init__(..., gui=True)来要禁用终端status_printer创建。
  • 重定义close(), clear(), display()三个函数

考虑重载display()来使用self.frontend(** .format_dict)而不是self.sp(repr(self))。

 

Dynamic Monitor/Meter

你可以用tqdm作为一个非单调增长的meter。这可能是因为n减少(例如CPU使用监视器)或total更改。
一个例子是递归搜索文件。total是目前找到的对象数量,n是文件(而不是文件夹)的对象数量:

from tqdm import tqdm
import os.path

def find_files_recursively(path, show_progress=True):
    files = []
    # total=1 assumes `path` is a file
    t = tqdm(total=1, unit="file", disable=not show_progress)
    if not os.path.exists(path):
        raise IOError("Cannot find:" + path)

    def append_found_file(f):
        files.append(f)
        t.update()

    def list_found_dir(path):
        """returns os.listdir(path) assuming os.path.isdir(path)"""
        listing = os.listdir(path)
        # subtract 1 since a "file" we found was actually this directory
        t.total += len(listing) - 1
        # fancy way to give info without forcing a refresh
        t.set_postfix(dir=path[-10:], refresh=False)
        t.update(0)  # may trigger a refresh
        return listing

    def recursively_search(path):
        if os.path.isdir(path):
            for f in list_found_dir(path):
                recursively_search(os.path.join(path, f))
        else:
            append_found_file(path)

    recursively_search(path)
    t.set_postfix(dir=path)
    t.close()
    return files

使用update(0)是让tqdm决定何时触发显示刷新以避免控制台垃圾信息的一种简便方法。

 

Writing messages

这是一项正在进行的工作(见#737)。
由于tqdm使用简单的打印机制来显示进度条,所以在打开进度条时,不应该在终端中使用print()编写任何消息。
为了在终端中写入消息而不与tqdm bar显示发生冲突,提供了.write()方法:

from tqdm import tqdm, trange
from time import sleep

bar = trange(10)
for i in bar:
    # Print using tqdm class method .write()
    sleep(0.1)
    if not (i % 3):
        tqdm.write("Done task %i" % i)
    # Can also use bar.write()

返回:

 20%|██        | 2/10 [00:00<00:00,  9.48it/s]
Done task 0
 50%|█████     | 5/10 [00:00<00:00,  9.53it/s]
Done task 3
 80%|████████  | 8/10 [00:00<00:00,  9.50it/s]
Done task 6
100%|██████████| 10/10 [00:01<00:00,  9.56it/s]
Done task 9

默认情况下,这将打印到标准输出sys.stdout。但是您可以使用file参数指定任何类似文件的对象。例如,这可以用于将写入的消息重定向到日志文件或类。

 

Redirecting writing

如果使用一个可以将消息打印到控制台的库,那么用tqdm.write()替换print()来编辑库可能是不可取的。在这种情况下,重定向sys.stdout到tqdm.write()是一个选择。
重定向sys.stdout,创建一个类似于文件的类,该类将向tqdm.write()写入任何输入字符串,并提供参数file=sys.stdout, dynamic_ncols = True。
一个可重用的规范示例如下:

from time import sleep
import contextlib
import sys
from tqdm import tqdm

class DummyTqdmFile(object):
    """Dummy file-like that will write to tqdm"""
    file = None
    def __init__(self, file):
        self.file = file

    def write(self, x):
        # Avoid print() second call (useless \n)
        if len(x.rstrip()) > 0:
            tqdm.write(x, file=self.file)

    def flush(self):
        return getattr(self.file, "flush", lambda: None)()

@contextlib.contextmanager
def std_out_err_redirect_tqdm():
    orig_out_err = sys.stdout, sys.stderr
    try:
        sys.stdout, sys.stderr = map(DummyTqdmFile, orig_out_err)
        yield orig_out_err[0]
    # Relay exceptions
    except Exception as exc:
        raise exc
    # Always restore sys.stdout/err if necessary
    finally:
        sys.stdout, sys.stderr = orig_out_err

def some_fun(i):
    print("Fee, fi, fo,".split()[i])

# Redirect stdout to tqdm.write() (don't forget the `as save_stdout`)
with std_out_err_redirect_tqdm() as orig_stdout:
    # tqdm needs the original stdout
    # and dynamic_ncols=True to autodetect console width
    for i in tqdm(range(3), file=orig_stdout, dynamic_ncols=True):
        sleep(.5)
        some_fun(i)

# After the `with`, printing is restored
print("Done!")

返回:

Fee,                                 
fi,                                          
fo,                                          
100%|██████████| 3/3 [00:01<00:00,  1.97it/s]
Done!

 

Monitoring thread, intervals and miniters

tqdm实现了一些技巧来提高效率和减少开销。

  • 避免不必要的频繁刷新:mininterval定义每次刷新之间要等待多长时间。tqdm总是在后台更新,但它只显示每分钟一次。
  • 减少检查系统时钟/时间的次数。
  • mininterval比miniter更易于配置。一个聪明的调整系统dynamic_miniter将自动调整miniter到适合时间mininterval的迭代量。本质上,tqdm将在没有实际检查时间的情况下检查是否需要打印。这种行为仍然可以通过手动设置miniter来绕过。

然而,考虑一个结合了快速和缓慢迭代的案例。经过几次快速迭代之后,dynamic_miniter将把miniter设置为一个很大的数字。当迭代速率随后减慢时,miniter将保持较大的值,从而降低显示更新频率。为了解决这个问题:

  • maxinterval定义显示刷新之间的最大时间间隔。并发监视线程检查过期的更新,并在必要时强制执行更新。

监视线程不应该有明显的开销,并且默认情况下保证至少每10秒更新一次。可以通过设置任何tqdm实例的monitor_interval(即t = tqdm.tqdm(…); t.monitor_interval = 2)直接更改此值。通过设置tqdm.tqdm.monitor_interval = 0可以在实例化任何tqdm bar之前在应用程序范围内禁用监视器线程。

 

posted @ 2019-09-16 17:46  慢行厚积  阅读(5855)  评论(0编辑  收藏  举报