VAE论文学习
intractable棘手的,难处理的 posterior distributions后验分布 directed probabilistic有向概率
approximate inference近似推理 multivariate Gaussian多元高斯 diagonal对角 maximum likelihood极大似然
参考:https://blog.csdn.net/yao52119471/article/details/84893634
VAE论文所在讲的问题是:
我们现在就是想要训练一个模型P(x),并求出其参数Θ:
通过极大似然估计求其参数
Variational Inference
在论文中P(x)模型会被拆分成两部分,一部分由数据x生成潜在向量z,即pθ(z|X);一部分从z重新在重构数据x,即pθ(X|z)
实现过程则是希望能够使用一个qΦ(z|X)模型去近似pθ(z|X),然后作为模型的Encoder;后半部分pθ(X|z)则作为Decoder,Φ/θ表示参数,实现一种同时学习识别模型参数φ和参数θ的生成模型的方法,推导过程为:
现在问题就在于怎么进行求导,因为现在模型已经不是一个完整的P(x) = pθ(z|X) + pθ(X|z),现在变成了P(x) = qΦ(z|X) + pθ(X|z),那么如果对Φ求导就会变成一个问题,因此论文中就提出了一个reparameterization trick方法:
取样于一个标准正态分布来采样z,以此将qΦ(z|X) 和pθ(X|z)两个子模型通过z连接在了一起
最终的目标函数为:
因此目标函数 = 输入和输出x求MSELoss - KL(qΦ(z|X) || pθ(z))
在论文上对式子最后的KL散度 -KL(qΦ(z|X) || pθ(z))的计算有简化为:
多维KL散度的推导可见:KL散度
假设pθ(z)服从标准正态分布,采样ε服从标准正态分布满足该假设
简单代码实现:
import torch from torch.autograd import Variable import numpy as np import torch.nn.functional as F import torchvision from torchvision import transforms import torch.optim as optim from torch import nn import matplotlib.pyplot as plt class Encoder(torch.nn.Module): def __init__(self, D_in, H, D_out): super(Encoder, self).__init__() self.linear1 = torch.nn.Linear(D_in, H) self.linear2 = torch.nn.Linear(H, D_out) def forward(self, x): x = F.relu(self.linear1(x)) return F.relu(self.linear2(x)) class Decoder(torch.nn.Module): def __init__(self, D_in, H, D_out): super(Decoder, self).__init__() self.linear1 = torch.nn.Linear(D_in, H) self.linear2 = torch.nn.Linear(H, D_out) def forward(self, x): x = F.relu(self.linear1(x)) return F.relu(self.linear2(x)) class VAE(torch.nn.Module): latent_dim = 8 def __init__(self, encoder, decoder): super(VAE, self).__init__() self.encoder = encoder self.decoder = decoder self._enc_mu = torch.nn.Linear(100, 8) self._enc_log_sigma = torch.nn.Linear(100, 8) def _sample_latent(self, h_enc): """ Return the latent normal sample z ~ N(mu, sigma^2) """ mu = self._enc_mu(h_enc) log_sigma = self._enc_log_sigma(h_enc) #得到的值是loge(sigma) sigma = torch.exp(log_sigma) # = e^loge(sigma) = sigma #从均匀分布中取样 std_z = torch.from_numpy(np.random.normal(0, 1, size=sigma.size())).float() self.z_mean = mu self.z_sigma = sigma return mu + sigma * Variable(std_z, requires_grad=False) # Reparameterization trick def forward(self, state): h_enc = self.encoder(state) z = self._sample_latent(h_enc) return self.decoder(z) # 计算KL散度的公式 def latent_loss(z_mean, z_stddev): mean_sq = z_mean * z_mean stddev_sq = z_stddev * z_stddev return 0.5 * torch.mean(mean_sq + stddev_sq - torch.log(stddev_sq) - 1) if __name__ == '__main__': input_dim = 28 * 28 batch_size = 32 transform = transforms.Compose( [transforms.ToTensor()]) mnist = torchvision.datasets.MNIST('./', download=True, transform=transform) dataloader = torch.utils.data.DataLoader(mnist, batch_size=batch_size, shuffle=True, num_workers=2) print('Number of samples: ', len(mnist)) encoder = Encoder(input_dim, 100, 100) decoder = Decoder(8, 100, input_dim) vae = VAE(encoder, decoder) criterion = nn.MSELoss() optimizer = optim.Adam(vae.parameters(), lr=0.0001) l = None for epoch in range(100): for i, data in enumerate(dataloader, 0): inputs, classes = data inputs, classes = Variable(inputs.resize_(batch_size, input_dim)), Variable(classes) optimizer.zero_grad() dec = vae(inputs) ll = latent_loss(vae.z_mean, vae.z_sigma) loss = criterion(dec, inputs) + ll loss.backward() optimizer.step() l = loss.data[0] print(epoch, l) plt.imshow(vae(inputs).data[0].numpy().reshape(28, 28), cmap='gray') plt.show(block=True)