pytorch对模型参数初始化

1.使用apply()

举例说明:

  • Encoder :设计的编码其模型
  • weights_init(): 用来初始化模型
  • model.apply():实现初始化
# coding:utf-8
from torch import nn

def weights_init(mod):
    """设计初始化函数"""
    classname=mod.__class__.__name__
    # 返回传入的module类型
    print(classname)
    if classname.find('Conv')!= -1:    #这里的Conv和BatchNnorm是torc.nn里的形式
        mod.weight.data.normal_(0.0,0.02)
    elif classname.find('BatchNorm')!= -1:
        mod.weight.data.normal_(1.0,0.02) #bn层里初始化γ,服从(10.02)的正态分布
        mod.bias.data.fill_(0)  #bn层里初始化β,默认为0

class Encoder(nn.Module):
    def __init__(self, input_size, input_channels, base_channnes, z_channels):

        super(Encoder, self).__init__()
        # input_size必须为16的倍数
        assert input_size % 16 == 0, "input_size has to be a multiple of 16"

        models = nn.Sequential()
        models.add_module('Conv2_{0}_{1}'.format(input_channels, base_channnes), nn.Conv2d(input_channels, base_channnes, 4, 2, 1, bias=False))
        models.add_module('LeakyReLU_{0}'.format(base_channnes), nn.LeakyReLU(0.2, inplace=True))
        # 此时图片大小已经下降一倍
        temp_size = input_size/2

        # 直到特征图高宽为4
        # 目的是保证无论输入什么大小的图片,经过这几层后特征图大小为4*4
        while temp_size > 4 :
            models.add_module('Conv2_{0}_{1}'.format(base_channnes, base_channnes*2), nn.Conv2d(base_channnes, base_channnes*2, 4, 2, 1, bias=False))
            models.add_module('BatchNorm2d_{0}'.format(base_channnes*2), nn.BatchNorm2d(base_channnes*2))
            models.add_module('LeakyReLU_{0}'.format(base_channnes*2), nn.LeakyReLU(0.2, inplace=True))
            base_channnes *= 2
            temp_size /= 2

        # 特征图高宽为4后面则添加上最后一层
        # 让输出为1*1
        models.add_module('Conv2_{0}_{1}'.format(base_channnes, z_channels), nn.Conv2d(base_channnes, z_channels, 4, 1, 0, bias=False))
        self.models = models

    def forward(self, x):
        x = self.models(x)
        return x

if __name__ == '__main__':
    e = Encoder(256, 3, 64, 100)
    # 对e模型中的每个module和其本身都会调用一次weights_init函数,mod参数的值即这些module
    e.apply(weights_init)
    # 根据名字来查看参数
    for name, param in e.named_parameters():
        print(name)
        # 举个例子看看是否按照设计进行初始化
        # 可见BatchNorm2d的weight是正态分布形的参数,bias参数都是0
        if name == 'models.BatchNorm2d_128.weight' or name == 'models.BatchNorm2d_128.bias':
            print(param)

返回:

# 返回的是依次传入初始化函数的module
Conv2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
BatchNorm2d
LeakyReLU
Conv2d
Sequential
Encoder

# 输出name的格式,并根据条件打印出BatchNorm2d-128的两个参数
models.Conv2_3_64.weight
models.Conv2_64_128.weight
models.BatchNorm2d_128.weight
Parameter containing:
tensor([1.0074, 0.9865, 1.0188, 1.0015, 0.9757, 1.0393, 0.9813, 1.0135, 1.0227,
        0.9903, 1.0490, 1.0102, 0.9920, 0.9878, 1.0060, 0.9944, 0.9993, 1.0139,
        0.9987, 0.9888, 0.9816, 0.9951, 1.0017, 0.9818, 0.9922, 0.9627, 0.9883,
        0.9985, 0.9759, 0.9962, 1.0183, 1.0199, 1.0033, 1.0475, 0.9586, 0.9916,
        1.0354, 0.9956, 0.9998, 1.0022, 1.0307, 1.0141, 1.0062, 1.0082, 1.0111,
        0.9683, 1.0372, 0.9967, 1.0157, 1.0299, 1.0352, 0.9961, 0.9901, 1.0274,
        0.9727, 1.0042, 1.0278, 1.0134, 0.9648, 0.9887, 1.0225, 1.0175, 1.0002,
        0.9988, 0.9839, 1.0023, 0.9913, 0.9657, 1.0404, 1.0197, 1.0221, 0.9925,
        0.9962, 0.9910, 0.9865, 1.0342, 1.0156, 0.9688, 1.0015, 1.0055, 0.9751,
        1.0304, 1.0132, 0.9778, 0.9900, 1.0092, 0.9745, 1.0067, 1.0077, 1.0057,
        1.0117, 0.9850, 1.0309, 0.9918, 0.9945, 0.9935, 0.9746, 1.0366, 0.9913,
        0.9564, 1.0071, 1.0370, 0.9774, 1.0126, 1.0040, 0.9946, 1.0080, 1.0126,
        0.9761, 0.9811, 0.9974, 0.9992, 1.0338, 1.0104, 0.9931, 1.0204, 1.0230,
        1.0255, 0.9969, 1.0079, 1.0127, 0.9816, 1.0132, 0.9884, 0.9691, 0.9922,
        1.0166, 0.9980], requires_grad=True)
models.BatchNorm2d_128.bias
Parameter containing:
tensor([0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0., 0.,
        0., 0., 0., 0., 0., 0., 0., 0.], requires_grad=True)
models.Conv2_128_256.weight
models.BatchNorm2d_256.weight
models.BatchNorm2d_256.bias
models.Conv2_256_512.weight
models.BatchNorm2d_512.weight
models.BatchNorm2d_512.bias
models.Conv2_512_1024.weight
models.BatchNorm2d_1024.weight
models.BatchNorm2d_1024.bias models.Conv2_1024_2048.weight models.BatchNorm2d_2048.weight models.BatchNorm2d_2048.bias models.Conv2_2048_100.weight

 

2.直接在定义网络时定义

import torch.nn as nn
import torch.nn.init as init
import torch.nn.functional as F

class Discriminator(nn.Module):
    """ 
        6层全连接层
    """
    def __init__(self, z_dim):
        super(Discriminator, self).__init__()
        self.z_dim = z_dim
        self.net = nn.Sequential(
            nn.Linear(z_dim, 1000),
            nn.LeakyReLU(0.2, True),
            nn.Linear(1000, 1000),
            nn.LeakyReLU(0.2, True),
            nn.Linear(1000, 1000),
            nn.LeakyReLU(0.2, True),
            nn.Linear(1000, 1000),
            nn.LeakyReLU(0.2, True),
            nn.Linear(1000, 1000),
            nn.LeakyReLU(0.2, True),
            nn.Linear(1000, 2),
        )
        self.weight_init()

    # 参数初始化
    def weight_init(self, mode='normal'):
        if mode == 'kaiming':
            initializer = kaiming_init
        elif mode == 'normal':
            initializer = normal_init

        for block in self._modules:
            for m in self._modules[block]:
                initializer(m)

    def forward(self, z):
        return self.net(z).squeeze()

def kaiming_init(m):
    if isinstance(m, (nn.Linear, nn.Conv2d)):
        init.kaiming_normal_(m.weight)
        if m.bias is not None:
            m.bias.data.fill_(0)
    elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
        m.weight.data.fill_(1)
        if m.bias is not None:
            m.bias.data.fill_(0)

def normal_init(m):
    if isinstance(m, (nn.Linear, nn.Conv2d)):
        init.normal_(m.weight, 0, 0.02)
        if m.bias is not None:
            m.bias.data.fill_(0)
    elif isinstance(m, (nn.BatchNorm1d, nn.BatchNorm2d)):
        m.weight.data.fill_(1)
        if m.bias is not None:
            m.bias.data.fill_(0)

然后调用即可

posted @ 2019-08-20 19:49  慢行厚积  阅读(11758)  评论(0编辑  收藏  举报