torch.nn.functional中softmax的作用及其参数说明
参考:https://pytorch-cn.readthedocs.io/zh/latest/package_references/functional/#_1
class torch.nn.Softmax(input, dim)
或:
torch.nn.functional.softmax(input, dim)
对n维输入张量运用Softmax函数,将张量的每个元素缩放到(0,1)区间且和为1。Softmax函数定义如下:
参数:
dim:指明维度,dim=0表示按列计算;dim=1表示按行计算。默认dim的方法已经弃用了,最好声明dim,否则会警告:
UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument.
shape:
- 输入:(N, L)
- 输出:(N, L)
返回结果是一个与输入维度dim相同的张量,每个元素的取值范围在(0,1)区间。
例子:
import torch from torch import nn from torch import autograd m = nn.Softmax() input = autograd.Variable(torch.randn(2, 3)) print(input) print(m(input))
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([[ 0.2854, 0.1708, 0.4308], [-0.1983, 2.0705, 0.1549]]) test.py:9: UserWarning: Implicit dimension choice for softmax has been deprecated. Change the call to include dim=X as an argument. print(m(input)) tensor([[0.3281, 0.2926, 0.3794], [0.0827, 0.7996, 0.1177]])
可见默认按行计算,即dim=1
更明显的例子:
import torch import torch.nn.functional as F x= torch.Tensor( [ [1,2,3,4],[1,2,3,4],[1,2,3,4]]) y1= F.softmax(x, dim = 0) #对每一列进行softmax print(y1) y2 = F.softmax(x,dim =1) #对每一行进行softmax print(y2) x1 = torch.Tensor([1,2,3,4]) print(x1) y3 = F.softmax(x1,dim=0) #一维时使用dim=0,使用dim=1报错 print(y3)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([[0.3333, 0.3333, 0.3333, 0.3333], [0.3333, 0.3333, 0.3333, 0.3333], [0.3333, 0.3333, 0.3333, 0.3333]]) tensor([[0.0321, 0.0871, 0.2369, 0.6439], [0.0321, 0.0871, 0.2369, 0.6439], [0.0321, 0.0871, 0.2369, 0.6439]]) tensor([1., 2., 3., 4.]) tensor([0.0321, 0.0871, 0.2369, 0.6439])
因为列的值相同,所以按列计算时每一个所占的比重都是0.3333;行都是[1,2,3,4],所以按行计算,比重结果都为[0.0321, 0.0871, 0.2369, 0.6439]
一维使用dim=1报错:
RuntimeError: Dimension out of range (expected to be in range of [-1, 0], but got 1)