pytorch学习-WHAT IS PYTORCH
参考:https://pytorch.org/tutorials/beginner/blitz/tensor_tutorial.html#sphx-glr-beginner-blitz-tensor-tutorial-py
WHAT IS PYTORCH
这是一个基于python的实现两种功能的科学计算包:
- 用于替换NumPy去使用GPUs的算力
- 一个提供了最大化灵活度和速度的深度学习搜索平台
Getting Started
Tensors
Tensors与NumPy的ndarrays相似,不同在于Tensors能够使用在GPU上去加速计算能力
from __future__ import print_function import torch
构造一个5*3的矩阵,不初始化
x = torch.empty(5, 3) print(x)
输出:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([[ 0.0000e+00, -2.5244e-29, 0.0000e+00], [-2.5244e-29, 1.9618e-44, 9.2196e-41], [ 0.0000e+00, 7.7050e+31, 0.0000e+00], [ 0.0000e+00, 0.0000e+00, 0.0000e+00], [ 0.0000e+00, 0.0000e+00, 8.6499e-38]])
随机构造一个初始化矩阵:
x = torch.rand(5, 3) print(x)
输出:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([[0.4803, 0.5157, 0.9041], [0.1619, 0.8994, 0.4302], [0.6824, 0.6559, 0.9317], [0.5558, 0.8311, 0.2492], [0.8287, 0.1050, 0.7201]])
构建一个全为0的矩阵,并且设置类型为long:
x = torch.zeros(5, 3, dtype=torch.long) print(x)
输出:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([[0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0], [0, 0, 0]])
直接使用数据来构造一个tensor:
x = torch.tensor([5.5, 3]) print(x)
输出:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([5.5000, 3.0000])
或者基于存在的tensor去创建一个tensor。这些方法将重新使用输入tensor的特性,如dtype,除非用户提供新的值。默认的dtype为torch.float
#-*- coding: utf-8 -*- from __future__ import print_function import torch x = torch.tensor([5.5, 3]) print(x) x = x.new_ones(5, 3, dtype=torch.double) # new_* methods take in sizes,就是新建一个矩阵,其与x无关 print(x) #设置dtype为torch.float64 x = torch.randn_like(x, dtype=torch.float) # override dtype! print(x) # 会得到与x有相同大小的矩阵,dtype又从torch.float64变为torch.float
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([5.5000, 3.0000]) tensor([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]], dtype=torch.float64) tensor([[-3.0480e-01, 1.5148e+00, -1.1507e+00], [ 5.9181e-04, -8.0706e-01, 3.3035e-01], [ 1.5499e+00, -6.1708e-01, 5.8211e-01], [-9.1276e-02, -9.4747e-01, -1.8206e-01], [-8.9208e-02, -1.5132e-01, 1.2374e+00]])
得到矩阵的大小:
print(x.size())
返回:
torch.Size([5, 3])
⚠️torch.Size实际上是一个元祖,它支持所有的元祖操作
Operations
这里有着多种操作的语法。如下面的例子,我们将看见的是加法操作:
#-*- coding: utf-8 -*- from __future__ import print_function import torch x = torch.tensor([5.5, 3]) print(x) x = x.new_ones(5, 3) # new_* methods take in sizes,就是新建一个矩阵,其与x无关 print(x) y = torch.rand(5, 3) print(y) print(x + y)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([5.5000, 3.0000]) tensor([[1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.], [1., 1., 1.]]) tensor([[2.5123e-04, 9.8943e-01, 5.3585e-01], [9.4955e-01, 1.3734e-01, 4.0120e-01], [3.6199e-01, 1.5062e-01, 2.7033e-01], [9.5025e-01, 6.3539e-01, 2.3759e-01], [6.7833e-01, 4.3510e-01, 2.3747e-01]]) tensor([[1.0003, 1.9894, 1.5359], [1.9496, 1.1373, 1.4012], [1.3620, 1.1506, 1.2703], [1.9502, 1.6354, 1.2376], [1.6783, 1.4351, 1.2375]])
等价于:
print(torch.add(x,y))
还可以设置一个输出变量,然后使用变量输出:
torch.add(x, y, out=result) print(result)
还有内置加法函数:
y.add_(x)
print(y)
⚠️任何改变张量的内置操作都使用了_后缀。如x.copy_(y),x.t_()都会改变x的值
你也可以使用标准的类似于numpy的索引:
print(x[:, 1])
调整:如果你想要调整/重塑tensor,你可以使用torch.view:
#-*- coding: utf-8 -*- from __future__ import print_function import torch x = torch.randn(4, 4) print(x) y = x.view(16) print(y) z = x.view(-1, 8) # -1表示从其他维度推断,即后面设为8,那么前面就推断是2 print(z) print(x.size(), y.size(), z.size())
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([[ 1.4353, -0.7081, 1.1953, -0.1438], [-0.9198, -0.8695, -0.3122, -0.0882], [ 0.5113, -1.3449, -0.9429, 1.7962], [ 0.5734, 1.0710, -0.9295, -2.0507]]) tensor([ 1.4353, -0.7081, 1.1953, -0.1438, -0.9198, -0.8695, -0.3122, -0.0882, 0.5113, -1.3449, -0.9429, 1.7962, 0.5734, 1.0710, -0.9295, -2.0507]) tensor([[ 1.4353, -0.7081, 1.1953, -0.1438, -0.9198, -0.8695, -0.3122, -0.0882], [ 0.5113, -1.3449, -0.9429, 1.7962, 0.5734, 1.0710, -0.9295, -2.0507]]) torch.Size([4, 4]) torch.Size([16]) torch.Size([2, 8])
如果你有只有一个元素的tensor,那么就能够使用.item()去得到一个转换为python数字的值:
#-*- coding: utf-8 -*- from __future__ import print_function import torch x = torch.randn(1) print(x) print(x.item())
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([-2.3159]) -2.3158915042877197
⚠️100+的张量运算,包括转置、标引、切片、数学运算、线性代数、随机数等,都计算在here
NumPy Bridge
将Torch Tensor转换为NumPy数组,反之亦然,是一件轻而易举的事。
Torch张量和NumPy数组将共享它们的底层内存位置,更改一个将更改另一个。
Converting a Torch Tensor to a NumPy Array
#-*- coding: utf-8 -*- from __future__ import print_function import torch a = torch.ones(5) print(a) b = a.numpy() print(b) a.add_(1) print(a) print(b)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py tensor([1., 1., 1., 1., 1.]) [1. 1. 1. 1. 1.] tensor([2., 2., 2., 2., 2.]) [2. 2. 2. 2. 2.]
从上面的结果可以看见,仅更改tensor a也会导致b被更改
Converting NumPy Array to Torch Tensor
查看如何改变np数组来自动改变torch张量
#-*- coding: utf-8 -*- from __future__ import print_function import torch import numpy as np a = np.ones(5) b = torch.from_numpy(a) np.add(a, 1, out=a) print(a) print(b)
返回:
(deeplearning) userdeMBP:pytorch user$ python test.py [2. 2. 2. 2. 2.] tensor([2., 2., 2., 2., 2.], dtype=torch.float64)
CPU上除了Char Tensor以外的所有张量都支持转换成NumPy,或者反向转换
CUDA Tensors
Tensors可以被移到任意的设备,使用.to方法
#-*- coding: utf-8 -*- from __future__ import print_function import torch # let us run this cell only if CUDA is available # We will use ``torch.device`` objects to move tensors in and out of GPU if torch.cuda.is_available(): device = torch.device("cuda") # a CUDA device object x = torch.randn(4, 4) y = torch.ones_like(x, device=device) # directly create a tensor on GPU x = x.to(device) # or just use strings ``.to("cuda")`` z = x + y print(z) print(z.to("cpu", torch.double)) # ``.to`` can also change dtype together!
之前使用的机器中没有CUDA,换到另一台运行:
user@home:/opt/user$ python test.py tensor([[0.6344, 1.7958, 2.3387, 2.0527], [2.1517, 2.1555, 2.1645, 0.4499], [2.2020, 1.7363, 3.1394, 0.1240], [1.9541, 1.6115, 2.0081, 1.8911]], device='cuda:0') tensor([[0.6344, 1.7958, 2.3387, 2.0527], [2.1517, 2.1555, 2.1645, 0.4499], [2.2020, 1.7363, 3.1394, 0.1240], [1.9541, 1.6115, 2.0081, 1.8911]], dtype=torch.float64)