(predicted == labels).sum().item()作用
⚠️(predicted == labels).sum().item()作用,举个小例子介绍:
# -*- coding: utf-8 -*-
import torch
import numpy as np
data1 = np.array([
[1,2,3],
[2,3,4]
])
data1_torch = torch.from_numpy(data1)
data2 = np.array([
[1,2,3],
[2,3,4]
])
data2_torch = torch.from_numpy(data2)
p = (data1_torch == data2_torch) #对比后相同的值会为1,不同则会为0
print p
print type(p)
d1 = p.sum() #将所有的值相加,得到的仍是tensor类别的int值
print d1
print type(d1)
d2 = d1.item() #转成python数字
print d2
print type(d2)
返回:
(deeplearning2) userdeMBP:pytorch user$ python test.py
tensor([[1, 1, 1],
[1, 1, 1]], dtype=torch.uint8)
<class 'torch.Tensor'>
tensor(6)
<class 'torch.Tensor'>
6
<type 'int'>
即如果有不同的话,会变成:
# -*- coding: utf-8 -*-
import torch import numpy as np data1 = np.array([ [1,2,3], [2,3,4] ]) data1_torch = torch.from_numpy(data1) data2 = np.array([ [1,2,3], [4,5,6] ]) data2_torch = torch.from_numpy(data2) p = (data1_torch == data2_torch) print p print type(p) d1 = p.sum() print d1 print type(d1) d2 = d1.item() print d2 print type(d2)
返回:
(deeplearning2) userdeMBP:pytorch user$ python test.py tensor([[1, 1, 1], [0, 0, 0]], dtype=torch.uint8) <class 'torch.Tensor'> tensor(3) <class 'torch.Tensor'> 3 <type 'int'>