代码改变世界

Redis系列十:Pipeline详解

  l_v_y_forever  阅读(971)  评论(0编辑  收藏  举报

转载自:https://blog.csdn.net/w1lgy/article/details/84455579

一、pipeline出现的背景:

redis客户端执行一条命令分4个过程:

  发送命令-〉命令排队-〉命令执行-〉返回结果
 
  • 1

这个过程称为Round trip time(简称RTT, 往返时间),mget mset有效节约了RTT,但大部分命令(如hgetall,并没有mhgetall)不支持批量操作,需要消耗N次RTT ,这个时候需要pipeline来解决这个问题

二、pepeline的性能

1、未使用pipeline执行N条命令

在这里插入图片描述

2、使用了pipeline执行N条命令

在这里插入图片描述

3、两者性能对比

在这里插入图片描述
小结:这是一组统计数据出来的数据,使用Pipeline执行速度比逐条执行要快,特别是客户端与服务端的网络延迟越大,性能体能越明显。
下面贴出测试代码分析两者的性能差异:

	@Test
	public void pipeCompare() {
		Jedis redis = new Jedis("192.168.1.111", 6379);
		redis.auth("12345678");//授权密码 对应redis.conf的requirepass密码
		Map<String, String> data = new HashMap<String, String>();
		redis.select(8);//使用第8个库
		redis.flushDB();//清空第8个库所有数据
		// hmset
		long start = System.currentTimeMillis();
		// 直接hmset
		for (int i = 0; i < 10000; i++) {
			data.clear();  //清空map
			data.put("k_" + i, "v_" + i);
			redis.hmset("key_" + i, data); //循环执行10000条数据插入redis
		}
		long end = System.currentTimeMillis();
		System.out.println("    共插入:[" + redis.dbSize() + "]条 .. ");
		System.out.println("1,未使用PIPE批量设值耗时" + (end - start) / 1000 + "秒..");
		redis.select(8);
		redis.flushDB();
		// 使用pipeline hmset
		Pipeline pipe = redis.pipelined();
		start = System.currentTimeMillis();
		//
		for (int i = 0; i < 10000; i++) {
			data.clear();
			data.put("k_" + i, "v_" + i);
			pipe.hmset("key_" + i, data); //将值封装到PIPE对象,此时并未执行,还停留在客户端
		}
		pipe.sync(); //将封装后的PIPE一次性发给redis
		end = System.currentTimeMillis();
		System.out.println("    PIPE共插入:[" + redis.dbSize() + "]条 .. ");
		System.out.println("2,使用PIPE批量设值耗时" + (end - start) / 1000 + "秒 ..");
//--------------------------------------------------------------------------------------------------
		// hmget
		Set<String> keys = redis.keys("key_*"); //将上面设值所有结果键查询出来
		// 直接使用Jedis hgetall
		start = System.currentTimeMillis();
		Map<String, Map<String, String>> result = new HashMap<String, Map<String, String>>();
		for (String key : keys) {
			//此处keys根据以上的设值结果,共有10000个,循环10000次
			result.put(key, redis.hgetAll(key)); //使用redis对象根据键值去取值,将结果放入result对象
		}
		end = System.currentTimeMillis();
		System.out.println("    共取值:[" + redis.dbSize() + "]条 .. ");
		System.out.println("3,未使用PIPE批量取值耗时 " + (end - start) / 1000 + "秒 ..");

		// 使用pipeline hgetall
		result.clear();
		start = System.currentTimeMillis();
		for (String key : keys) {
			pipe.hgetAll(key); //使用PIPE封装需要取值的key,此时还停留在客户端,并未真正执行查询请求
		}
		pipe.sync();  //提交到redis进行查询
		
		end = System.currentTimeMillis();
		System.out.println("    PIPE共取值:[" + redis.dbSize() + "]条 .. ");
		System.out.println("4,使用PIPE批量取值耗时" + (end - start) / 1000 + "秒 ..");

		redis.disconnect();
	}
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25
  • 26
  • 27
  • 28
  • 29
  • 30
  • 31
  • 32
  • 33
  • 34
  • 35
  • 36
  • 37
  • 38
  • 39
  • 40
  • 41
  • 42
  • 43
  • 44
  • 45
  • 46
  • 47
  • 48
  • 49
  • 50
  • 51
  • 52
  • 53
  • 54
  • 55
  • 56
  • 57
  • 58
  • 59
  • 60
  • 61

在这里插入图片描述

三、原生批命令(mset, mget)与Pipeline对比

1、原生批命令是原子性,pipeline是非原子性

(原子性概念:一个事务是一个不可分割的最小工作单位,要么都成功要么都失败。原子操作是指你的一个业务逻辑必须是不可拆分的. 处理一件事情要么都成功,要么都失败,原子不可拆分)

2、原生批命令一命令多个key, 但pipeline支持多命令(存在事务),非原子性
3、原生批命令是服务端实现,而pipeline需要服务端与客户端共同完成

四、Pipeline正确使用方式

使用pipeline组装的命令个数不能太多,不然数据量过大,增加客户端的等待时间,还可能造成网络阻塞,可以将大量命令的拆分多个小的pipeline命令完成。

1、Jedis中的pipeline使用方式

大家知道redis提供了mset、mget方法,但没有提供mdel方法,如果想实现,可以借助pipeline实现。

2、Jedis中的pipeline使用步骤:

  • 获取jedis对象(一般从连接池中获取)
  • 获取jedis对象的pipeline对象
  • 添加指令
  • 执行指令

测试类方法:

	 @Test
	public void testCommond() {
		// 工具类初始化
		JedisUtils jedis = new JedisUtils("192.168.1.111", 6379, "12345678");

		for (int i = 0; i < 100; i++) {
			// 设值
			jedis.set("n" + i, String.valueOf(i));
		}
		System.out.println("keys from redis return =======" + jedis.keys("*"));

	}

	// 使用pipeline批量删除
	 @Test
	public void testPipelineMdel() {
		// 工具类初始化
		JedisUtils jedis = new JedisUtils("192.168.1.111", 6379, "12345678");
		List<String> keys = new ArrayList<String>();
		for (int i = 0; i < 100; i++) {
			keys.add("n" + i);
		}
		jedis.mdel(keys);
		System.out.println("after mdel the redis return ---------" + jedis.keys("*"));
	}
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

JedisUtils下的mdel方法:

	/**
	 * 删除多个字符串key 并释放连接
	 * 
	 * @param keys*
	 * @return 成功返回value 失败返回null
	 */
	public boolean mdel(List<String> keys) {
		Jedis jedis = null;
		boolean flag = false;
		try {
			jedis = pool.getResource();//从连接借用Jedis对象
			Pipeline pipe = jedis.pipelined();//获取jedis对象的pipeline对象
			for(String key:keys){
				pipe.del(key); //将多个key放入pipe删除指令中
			}
			pipe.sync(); //执行命令,完全此时pipeline对象的远程调用 
			flag = true;
		} catch (Exception e) {
			pool.returnBrokenResource(jedis);
			e.printStackTrace();
		} finally {
			returnResource(pool, jedis);
		}
		return flag;
	}
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22
  • 23
  • 24
  • 25

使用pipeline提交所有操作并返回执行结果:

@Test
	public void testPipelineSyncAll() {
		// 工具类初始化
		Jedis jedis = new Jedis("192.168.1.111", 6379);
		jedis.auth("12345678");
		// 获取pipeline对象
		Pipeline pipe = jedis.pipelined();
		pipe.multi();
		pipe.set("name", "james"); // 调值
		pipe.incr("age");// 自增
		pipe.get("name");
		pipe.discard();
		// 将不同类型的操作命令合并提交,并将操作操作以list返回
		List<Object> list = pipe.syncAndReturnAll();

		for (Object obj : list) {
			// 将操作结果打印出来
			System.out.println(obj);
		}
		// 断开连接,释放资源
		jedis.disconnect();
	}
 
  • 1
  • 2
  • 3
  • 4
  • 5
  • 6
  • 7
  • 8
  • 9
  • 10
  • 11
  • 12
  • 13
  • 14
  • 15
  • 16
  • 17
  • 18
  • 19
  • 20
  • 21
  • 22

五、redis事务

pipeline是多条命令的组合,为了保证它的原子性,redis提供了简单的事务。

1、redis的简单事务,

一组需要一起执行的命令放到multi和exec两个命令之间,其中multi代表事务开始,exec代表事务结束。
在这里插入图片描述

2、停止事务discard

在这里插入图片描述

3、命令错误,语法不正确,导致事务不能正常结束

在这里插入图片描述

4、运行错误,语法正确,但类型错误,事务可以正常结束

在这里插入图片描述

5、watch命令:

使用watch后, multi失效,事务失效
在这里插入图片描述

WATCH的机制是:在事务EXEC命令执行时,Redis会检查被WATCH的key,只有被WATCH的key从WATCH起始时至今没有发生过变更,EXEC才会被执行。如果WATCH的key在WATCH命令到EXEC命令之间发生过变化,则EXEC命令会返回失败。

小结:redis提供了简单的事务,不支持事务回滚

 
相关博文:
阅读排行:
· 10年+ .NET Coder 心语 ── 封装的思维:从隐藏、稳定开始理解其本质意义
· 地球OL攻略 —— 某应届生求职总结
· 提示词工程——AI应用必不可少的技术
· Open-Sora 2.0 重磅开源!
· 周边上新:园子的第一款马克杯温暖上架
点击右上角即可分享
微信分享提示