python 新旧类的问题
老式类就是经典类,不是继承自object类.在多继承时采用深度优先遍历父类.
新式类就是基类继承自object类 class xxx(object).多继承时采用一种新的C3 算法来遍历父类.
实例如下:
class GrandFather(object):
def speak(self):
print "speak: I am grandfather"
class Father(GrandFather):
def eat(self):
pass
class Mother(GrandFather):
def speak(self):
print "speak: I am mother"
class Son(Father, Mother):
def eat(self):
pass
#GrandFather继承object就为"新式类",去掉就为"旧式类"
son = Son()
son.speak()
新式类的打印结果如下:
speak: I am mother
旧式类的打印结果如下:
speak: I am GrandFather
由此我们可以看出新式类的搜索过程为:Son-->Father-->Mother,而旧式类的搜索过程为:Son-->Father-->GrandFather
我们可以看出旧式类和我们预期的继承不太一样。
老式类就是经典类,不是继承自object类.在多继承时采用深度优先遍历父类.
新式类就是基类继承自object类 class xxx(object).多继承时采用一种新的C3 算法来遍历父类.
为什么采用C3算法呢?
C3算法最早被提出是用于Lisp的,应用在Python中是为了解决原来基于深度优先搜索算法不满足本地优先级,和单调性的问题。
本地优先级:指声明时父类的顺序,比如C(A,B),如果访问C类对象属性时,应该根据声明顺序,优先查找A类,然后再查找B类。
单调性:如果在C的解析顺序中,A排在B的前面,那么在C的所有子类里,也必须满足这个顺序。
为了解释C3算法,我们引入了mro(mro即 method resolution order (方法解释顺序),主要用于在多继承时判断属性的路径(来自于哪个类))。
我们可以通过class.mro()来查看python类的mro
C3算法
判断mro要先确定一个线性序列,然后查找路径由由序列中类的顺序决定。所以C3算法就是生成一个线性序列。
如果继承至一个基类:
class B(A)
这时B的mro序列为[B,A]
如果继承至多个基类
class B(A1,A2,A3 ...)
这时B的mro序列 mro(B) = [B] + merge(mro(A1), mro(A2), mro(A3) ..., [A1,A2,A3])
merge操作就是C3算法的核心。
遍历执行merge操作的序列,如果一个序列的第一个元素,是其他序列中的第一个元素,或不在其他序列出现,则从所有执行merge操作序列中删除这个元素,合并到当前的mro中。
merge操作后的序列,继续执行merge操作,直到merge操作的序列为空。
如果merge操作的序列无法为空,则说明不合法。
例子:
class A(O):pass
class B(O):pass
class C(O):pass
class E(A,B):pass
class F(B,C):pass
class G(E,F):pass
A、B、C都继承至一个基类,所以mro序列依次为[A,O]、[B,O]、[C,O]
mro(E) = [E] + merge(mro(A), mro(B), [A,B])
= [E] + merge([A,O], [B,O], [A,B])
执行merge操作的序列为[A,O]、[B,O]、[A,B]
A是序列[A,O]中的第一个元素,在序列[B,O]中不出现,在序列[A,B]中也是第一个元素,所以从执行merge操作的序列([A,O]、[B,O]、[A,B])中删除A,合并到当前mro,[E]中。
mro(E) = [E,A] + merge([O], [B,O], [B])
再执行merge操作,O是序列[O]中的第一个元素,但O在序列[B,O]中出现并且不是其中第一个元素。继续查看[B,O]的第一个元素B,B满足条件,所以从执行merge操作的序列中删除B,合并到[E, A]中。
mro(E) = [E,A,B] + merge([O], [O])
= [E,A,B,O]