mysql之索引

一索引的介绍

索引在MySQL中也叫做“键”,是存储引擎用于快速找到记录的一种数据结构。索引对于良好的性能
非常关键,尤其是当表中的数据量越来越大时,索引对于性能的影响愈发重要。

本质都是:通过不断地缩小想要获取数据的范围来筛选出最终想要的结果,同时把随机的事件变成顺序的事件,也就是说,有了这种索引机制,我们可以总是用同一种查找方式来锁定数据。

考虑到磁盘IO是非常高昂的操作,计算机操作系统做了一些优化,当一次IO时,不光把当前磁盘地址的数据,而是把相邻的数据也都读取到内存缓冲区内。

 

二索引的数据结构

b+树性质
1.索引字段要尽量的小

.索引的最左匹配特

三MySQL索引管理

三 MySQL索引管理

一 功能

1. 索引的功能就是加速查找
2. mysql中的primary key,unique,联合唯一也都是索引,这些索引除了加速查找以外,还有约束的功能

二 MySQL的索引分类

普通索引INDEX:加速查找

唯一索引:
    -主键索引PRIMARY KEY:加速查找+约束(不为空、不能重复)
    -唯一索引UNIQUE:加速查找+约束(不能重复)

联合索引:
    -PRIMARY KEY(id,name):联合主键索引
    -UNIQUE(id,name):联合唯一索引
    -INDEX(id,name):联合普通索引

三 索引的两大类型hash与btree

 
我们可以在创建上述索引的时候,为其指定索引类型,分两类
hash类型的索引:查询单条快,范围查询慢
btree类型的索引:b+树,层数越多,数据量指数级增长(我们就用它,因为innodb默认支持它)

不同的存储引擎支持的索引类型也不一样
InnoDB 支持事务,支持行级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
MyISAM 不支持事务,支持表级别锁定,支持 B-tree、Full-text 等索引,不支持 Hash 索引;
Memory 不支持事务,支持表级别锁定,支持 B-tree、Hash 等索引,不支持 Full-text 索引;
NDB 支持事务,支持行级别锁定,支持 Hash 索引,不支持 B-tree、Full-text 等索引;
Archive 不支持事务,支持表级别锁定,不支持 B-tree、Hash、Full-text 等索引;
    

四 创建/删除索引的语法

按 Ctrl+C 复制代码
按 Ctrl+C 复制代码

四 测试索引

#方法一:创建表时
      CREATE TABLE 表名 (
                字段名1  数据类型 [完整性约束条件…],
                字段名2  数据类型 [完整性约束条件…],
                [UNIQUE | FULLTEXT | SPATIAL ]   INDEX | KEY
                [索引名]  (字段名[(长度)]  [ASC |DESC]) 
                );


#方法二:CREATE在已存在的表上创建索引
        CREATE  [UNIQUE | FULLTEXT | SPATIAL ]  INDEX  索引名 
                     ON 表名 (字段名[(长度)]  [ASC |DESC]) ;


#方法三:ALTER TABLE在已存在的表上创建索引

1 准备

#1. 准备表
create table s1(
id int,
name varchar(20),
gender char(6),
email varchar(50)
);

#2. 创建存储过程,实现批量插入记录
delimiter $$ #声明存储过程的结束符号为$$
create procedure auto_insert1()
BEGIN
    declare i int default 1;
    while(i<3000000)do
        insert into s1 values(i,concat('egon',i),'male',concat('egon',i,'@oldboy'));
        set i=i+1;
    end while;
END$$ #$$结束
delimiter ; #重新声明分号为结束符号

#3. 查看存储过程
show create procedure auto_insert1\G 

#4. 调用存储过程
call auto_insert1();

  

2 在没有索引的前提下测试查询速度

无索引:从头到尾扫描一遍,所以查询速度很慢
mysql> select * from s1 where id=333;
+------+---------+--------+----------------+
| id   | name    | gender | email          |
+------+---------+--------+----------------+
|  333 | egon333 | male   | 333@oldboy.com |
|  333 | egon333 | f      | alex333@oldboy |
|  333 | egon333 | f      | alex333@oldboy |
+------+---------+--------+----------------+
3 rows in set (0.32 sec)

mysql> select * from s1 where email='egon333@oldboy';
....
... rows in set (0.36 sec)

3 加上索引

ps:我们可以去mysql的data目录下找到该表,可以看到占用的硬盘空间多了

五 正确使用索引

一 并不是说我们创建了索引就一定会加快查询速度,如下索引未命中

select sql_no_cache * from s1 where email='xxx'; #命中索引,速度很快
select sql_no_cache * from s1 where email like '%old%'; #无法使用索引,速度依然很慢

二 覆盖索引与索引合并

#覆盖索引:
    - 在索引文件中直接获取数据
    http://blog.itpub.net/22664653/viewspace-774667/

#分析
select * from s1 where id=123;
该sql命中了索引,但未覆盖索引。
利用id=123到索引的数据结构中定位到该id在硬盘中的位置,或者说再数据表中的位置。
但是我们select的字段为*,除了id以外还需要其他字段,这就意味着,我们通过索引结构取到id还不够,还需要利用该id再去找到该id所在行的其他字段值,这是需要时间的,很明显,如果我们只select id,就减去了这份苦恼,如下
select id from s1 where id=123;
这条就是覆盖索引了,命中索引,且从索引的数据结构直接就取到了id在硬盘的地址,速度很快

 

#索引合并:把多个单列索引合并使用

#分析:
组合索引能做到的事情,我们都可以用索引合并去解决,比如
create index ne on s1(name,email);#组合索引
我们完全可以单独为name和email创建索引

组合索引可以命中:
select * from s1 where name='egon' ;
select * from s1 where name='egon' and email='adf';

索引合并可以命中:
select * from s1 where name='egon' ;
select * from s1 where email='adf';
select * from s1 where name='egon' and email='adf';

乍一看好像索引合并更好了:可以命中更多的情况,但其实要分情况去看,如果是name='egon' and email='adf',那么组合索引的效率要高于索引合并,如果是单条件查,那么还是用索引合并比较合理

三 若想利用索引达到预想的提高查询速度的效果,我们在添加索引时,必须遵循以下原则

#1.最左前缀匹配原则,非常重要的原则,
create index ix_name_email on s1(name,email,)
- 最左前缀匹配:必须按照从左到右的顺序匹配
select * from s1 where name='egon'; #可以
select * from s1 where name='egon' and email='asdf'; #可以
select * from s1 where email='alex@oldboy.com'; #不可以
mysql会一直向右匹配直到遇到范围查询(>、<、between、like)就停止匹配,比如a = 1 and b = 2 and c > 3 and d = 4 如果建立(a,b,c,d)顺序的索引,d是用不到索引的,如果建立(a,b,d,c)的索引则都可以用到,a,b,d的顺序可以任意调整。

#2.=和in可以乱序,比如a = 1 and b = 2 and c = 3 建立(a,b,c)索引可以任意顺序,mysql的查询优化器会帮你优化成索引可以识别的形式

#3.尽量选择区分度高的列作为索引,区分度的公式是count(distinct col)/count(*),表示字段不重复的比例,比例越大我们扫描的记录数越少,唯一键的区分度是1,而一些状态、性别字段可能在大数据面前区分度就是0,那可能有人会问,这个比例有什么经验值吗?使用场景不同,这个值也很难确定,一般需要join的字段我们都要求是0.1以上,即平均1条扫描10条记录

#4.索引列不能参与计算,保持列“干净”,比如from_unixtime(create_time) = ’2014-05-29’就不能使用到索引,原因很简单,b+树中存的都是数据表中的字段值,但进行检索时,需要把所有元素都应用函数才能比较,显然成本太大。所以语句应该写成create_time = unix_timestamp(’2014-05-29’);

#5.尽量的扩展索引,不要新建索引。比如表中已经有a的索引,现在要加(a,b)的索引,那么只需要修改原来的索引即可

最左前缀示范

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.39 sec)

mysql> create index idx on s1(id,name,email,gender); #未遵循最左前缀
Query OK, 0 rows affected (15.27 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.43 sec)


mysql> drop index idx on s1;
Query OK, 0 rows affected (0.16 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> create index idx on s1(name,email,gender,id); #遵循最左前缀
Query OK, 0 rows affected (15.97 sec)
Records: 0  Duplicates: 0  Warnings: 0

mysql> select * from s1 where id>3 and name='egon' and email='alex333@oldboy.com' and gender='male';
Empty set (0.03 sec)

索引无法命中的情况需要注意:

- like '%xx'
    select * from tb1 where email like '%cn';
    
    
- 使用函数
    select * from tb1 where reverse(email) = 'wupeiqi';
    
    
- or
    select * from tb1 where nid = 1 or name = 'seven@live.com';
    
    
    特别的:当or条件中有未建立索引的列才失效,以下会走索引
            select * from tb1 where nid = 1 or name = 'seven';
            select * from tb1 where nid = 1 or name = 'seven@live.com' and email = 'alex'
            
            
- 类型不一致
    如果列是字符串类型,传入条件是必须用引号引起来,不然...
    select * from tb1 where email = 999;
    
普通索引的不等于不会走索引
- !=
    select * from tb1 where email != 'alex'
    
    特别的:如果是主键,则还是会走索引
        select * from tb1 where nid != 123
- >
    select * from tb1 where email > 'alex'
    
    
    特别的:如果是主键或索引是整数类型,则还是会走索引
        select * from tb1 where nid > 123
        select * from tb1 where num > 123
        
        
#排序条件为索引,则select字段必须也是索引字段,否则无法命中
- order by
    select name from s1 order by email desc;
    当根据索引排序时候,select查询的字段如果不是索引,则不走索引
    select email from s1 order by email desc;
    特别的:如果对主键排序,则还是走索引:
        select * from tb1 order by nid desc;
 
- 组合索引最左前缀
    如果组合索引为:(name,email)
    name and email       -- 使用索引
    name                 -- 使用索引
    email                -- 不使用索引


- count(1)或count(列)代替count(*)在mysql中没有差别了

- create index xxxx  on tb(title(19)) #text类型,必须制定长度

其他注意事项

- 避免使用select *
- count(1)或count(列) 代替 count(*)
- 创建表时尽量时 char 代替 varchar
- 表的字段顺序固定长度的字段优先
- 组合索引代替多个单列索引(经常使用多个条件查询时)
- 尽量使用短索引
- 使用连接(JOIN)来代替子查询(Sub-Queries)
- 连表时注意条件类型需一致
- 索引散列值(重复少)不适合建索引,例:性别不适

六 查询优化神器-explain

关于explain命令相信大家并不陌生,具体用法和字段含义可以参考官网explain-output,这里需要强调rows是核心指标,绝大部分rows小的语句执行一定很快(有例外,下面会讲到)。所以优化语句基本上都是在优化rows。

执行计划:让mysql预估执行操作(一般正确)
    all < index < range < index_merge < ref_or_null < ref < eq_ref < system/const
    id,email
    
    慢:
        select * from userinfo3 where name='alex'
        
        explain select * from userinfo3 where name='alex'
        type: ALL(全表扫描)
            select * from userinfo3 limit 1;
    快:
        select * from userinfo3 where email='alex'
        type: const(走索引)

http://blog.itpub.net/29773961/viewspace-1767044/

七 慢查询优化的基本步骤

0.先运行看看是否真的很慢,注意设置SQL_NO_CACHE
1.where条件单表查,锁定最小返回记录表。这句话的意思是把查询语句的where都应用到表中返回的记录数最小的表开始查起,单表每个字段分别查询,看哪个字段的区分度最高
2.explain查看执行计划,是否与1预期一致(从锁定记录较少的表开始查询)
3.order by limit 形式的sql语句让排序的表优先查
4.了解业务方使用场景
5.加索引时参照建索引的几大原则
6.观察结果,不符合预期继续从0分析

八 慢日志管理

慢日志
            - 执行时间 > 10
            - 未命中索引
            - 日志文件路径
            
        配置:
            - 内存
                show variables like '%query%';
                show variables like '%queries%';
                set global 变量名 = 值
            - 配置文件
                mysqld --defaults-file='E:\wupeiqi\mysql-5.7.16-winx64\mysql-5.7.16-winx64\my-default.ini'
                
                my.conf内容:
                    slow_query_log = ON
                    slow_query_log_file = D:/....
                    
                注意:修改配置文件之后,需要重启服务
MySQL日志管理
========================================================
错误日志: 记录 MySQL 服务器启动、关闭及运行错误等信息
二进制日志: 又称binlog日志,以二进制文件的方式记录数据库中除 SELECT 以外的操作
查询日志: 记录查询的信息
慢查询日志: 记录执行时间超过指定时间的操作
中继日志: 备库将主库的二进制日志复制到自己的中继日志中,从而在本地进行重放
通用日志: 审计哪个账号、在哪个时段、做了哪些事件
事务日志或称redo日志: 记录Innodb事务相关的如事务执行时间、检查点等
========================================================
一、bin-log
1. 启用
# vim /etc/my.cnf
[mysqld]
log-bin[=dir\[filename]]
# service mysqld restart
2. 暂停
//仅当前会话
SET SQL_LOG_BIN=0;
SET SQL_LOG_BIN=1;
3. 查看
查看全部:
# mysqlbinlog mysql.000002
按时间:
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56"
# mysqlbinlog mysql.000002 --stop-datetime="2012-12-05 11:02:54"
# mysqlbinlog mysql.000002 --start-datetime="2012-12-05 10:02:56" --stop-datetime="2012-12-05 11:02:54" 

按字节数:
# mysqlbinlog mysql.000002 --start-position=260
# mysqlbinlog mysql.000002 --stop-position=260
# mysqlbinlog mysql.000002 --start-position=260 --stop-position=930
4. 截断bin-log(产生新的bin-log文件)
a. 重启mysql服务器
b. # mysql -uroot -p123 -e 'flush logs'
5. 删除bin-log文件
# mysql -uroot -p123 -e 'reset master' 


二、查询日志
启用通用查询日志
# vim /etc/my.cnf
[mysqld]
log[=dir\[filename]]
# service mysqld restart

三、慢查询日志
启用慢查询日志
# vim /etc/my.cnf
[mysqld]
log-slow-queries[=dir\[filename]]
long_query_time=n
# service mysqld restart
MySQL 5.6:
slow-query-log=1
slow-query-log-file=slow.log
long_query_time=3
查看慢查询日志
测试:BENCHMARK(count,expr)
SELECT BENCHMARK(50000000,2*3);
日志管理  

九参考博客

https://tech.meituan.com/mysql-index.html 

http://blog.itpub.net/29773961/viewspace-1767044/
http://www.cnblogs.com/wupeiqi/articles/5716963.html

http://www.cnblogs.com/hustcat/archive/2009/10/28/1591648.html
http://www.cnblogs.com/mr-wid/archive/2013/05/09/3068229.html
http://www.cnblogs.com/kissdodog/p/4159176.html
http://blog.csdn.net/ggxxkkll/article/details/7551766
http://blog.itpub.net/26435490/viewspace-1133659/
http://pymysql.readthedocs.io/en/latest/user/examples.html
http://www.cnblogs.com/lyhabc/p/3793524.html
http://www.jianshu.com/p/ed32d69383d2
http://doc.mysql.cn/mysql5/refman-5.1-zh.html-chapter/
http://doc.mysql.cn/
http://www.php100.com/html/webkaifa/database/Mysql/2013/0316/12223.html
http://blog.csdn.net/ltylove2007/article/details/21084809
http://lib.csdn.net/base/mysql
http://blog.csdn.net/c_enhui/article/details/9021271
http://www.cnblogs.com/edisonchou/p/3878135.html?utm_source=tuicool&utm_medium=referral
http://www.cnblogs.com/ggjucheng/archive/2012/11/11/2765465.html
http://www.cnblogs.com/cchust/p/3444510.html
http://www.docin.com/p-705091183.html
http://www.open-open.com/doc/view/51f552745f514bbbaf0aaecf6c88509a
http://www.open-open.com/doc/view/f80947a5c805458db8cf929834d241bf
http://www.open-open.com/lib/view/open1435498096607.html
http://www.open-open.com/doc/view/48c510607ab84fd8b87b158c3fe9d177
http://www.open-open.com/lib/view/open1448032294072.html
http://www.open-open.com/lib/view/open1404887901263.html
http://www.cnblogs.com/cchust/p/3426927.html
http://wribao.php230.com/category/news/1138254.html
http://www.iqiyi.com/w_19rqqds1ut.html
http://wenku.baidu.com/link?url=7Grxv0cQ_a00Ni2ZEU_cbDk2Wd2VTzlnS2UPKST3OF4oDqoLUQ2rQpOmK8ap12RDnXbnNs6gbY8DXVvWmo9bMxjWGS_vkhYus22ghAZYuES
http://www.cnblogs.com/edisonchou/p/3878135.html
http://blog.chinaunix.net/uid-540802-id-3419311.html
http://my.oschina.net/scipio/blog/293052
http://blog.itpub.net/29773961/viewspace-1767044/
http://my.oschina.net/lionets/blog/407263

posted @ 2017-09-12 16:07  Dear坏小子  阅读(163)  评论(0编辑  收藏  举报