1102. Invert a Binary Tree (25)
The following is from Max Howell @twitter:
Google: 90% of our engineers use the software you wrote (Homebrew), but you can't invert a binary tree on a whiteboard so fuck off.
Now it's your turn to prove that YOU CAN invert a binary tree!
Input Specification:
Each input file contains one test case. For each case, the first line gives a positive integer N (<=10) which is the total number of nodes in the tree -- and hence the nodes are numbered from 0 to N-1. Then N lines follow, each corresponds to a node from 0 to N-1, and gives the indices of the left and right children of the node. If the child does not exist, a "-" will be put at the position. Any pair of children are separated by a space.
Output Specification:
For each test case, print in the first line the level-order, and then in the second line the in-order traversal sequences of the inverted tree. There must be exactly one space between any adjacent numbers, and no extra space at the end of the line.
Sample Input:
8 1 - - - 0 - 2 7 - - - - 5 - 4 6
Sample Output:
3 7 2 6 4 0 5 1 6 5 7 4 3 2 0 1
#include<cstdio> #include<cstring> #include<queue> #include<algorithm> using namespace std; const int maxn = 15; struct node{ int lchild,rchild; }Node[maxn]; bool isRoot[maxn] = {false}; int n,num = 0; void print(int i){ printf("%d",i); num++; if(num < n)printf(" "); else printf("\n"); } void inOrder(int root){ if(root == -1) return; inOrder(Node[root].lchild); print(root); inOrder(Node[root].rchild); } void BFS(int root){ queue<int> q; q.push(root); while(!q.empty()){ int now = q.front(); q.pop(); print(now); if(Node[now].lchild != -1) q.push(Node[now].lchild); if(Node[now].rchild != -1) q.push(Node[now].rchild); } } void postOrder(int root){ if(root == -1) return; postOrder(Node[root].lchild); postOrder(Node[root].rchild); swap(Node[root].lchild,Node[root].rchild); } int findRoot(){ for(int i = 0; i < n; i++){ if(isRoot[i] == false) return i; } } int strToint(char c){ if(c == '-') return -1; else{ isRoot[c - '0'] = true; return c - '0'; } } int main(){ char lchild,rchild; scanf("%d",&n); for(int i = 0; i < n; i++){ scanf("%*c%c %c",&lchild,&rchild); Node[i].lchild = strToint(lchild); Node[i].rchild = strToint(rchild); } int root = findRoot(); postOrder(root); BFS(root); num = 0;//全局定义初始化的值已经在层序遍历的时候加过了 inOrder(root); return 0; }