11-散列4 Hashing - Hard Version (30 分)
Given a hash table of size N, we can define a hash function H(x)=x%N. Suppose that the linear probing is used to solve collisions, we can easily obtain the status of the hash table with a given sequence of input numbers.
However, now you are asked to solve the reversed problem: reconstruct the input sequence from the given status of the hash table. Whenever there are multiple choices, the smallest number is always taken.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N(≤1000), which is the size of the hash table. The next line contains N integers, separated by a space. A negative integer represents an empty cell in the hash table. It is guaranteed that all the non-negative integers are distinct in the table.
Output Specification:
For each test case, print a line that contains the input sequence, with the numbers separated by a space. Notice that there must be no extra space at the end of each line.
Sample Input:
11
33 1 13 12 34 38 27 22 32 -1 21
Sample Output:
1 13 12 21 33 34 38 27 22 32
/*知道散列数组大小,和散列数组值反求输入数组*/ #include<cstdio> #include<cstdlib> #include<set> using namespace std; const int maxn = 1010; int G[maxn][maxn]; void BuildGraph(int hash[], int n); void TopSort(int hash[], int hashMap[], int n, int num); int main() { int n; int num = 0; //纪录hash表中元素个数 int hash[maxn], hashMap[maxn]; scanf("%d", &n); for (int i = 0; i < n; i++) { scanf("%d", &hash[i]); hashMap[hash[i]] = i; if (hash[i] >= 0) { num++; } } BuildGraph(hash, n); TopSort(hash, hashMap, n, num); return 0; } void BuildGraph(int hash[], int n) { for (int i = 0; i < n; i++) { if (hash[i] >= 0) { int tmp = hash[i] % n; //对应采用线性检查法解决碰撞的元素 if (hash[tmp] != hash[i]) { for (int j = tmp; j != i; j = (j+1) % n) //建立有向拓扑图来 { G[j][i] = 1; //凡是在这个元素之前的位置,都要依赖他们先输入 } } } } } void TopSort(int hash[], int hashMap[], int n, int num) { int cnt = 0; int Indegree[maxn] = {0}; set<int> s; for (int v = 0; v < n; v++) { for(int w = 0; w < n; w++) { if (G[v][w] != 0) { Indegree[w]++; } } } for (int i = 0; i < n; i++) { if (Indegree[i] == 0 && hash[i] > 0) { s.insert(hash[i]); } } while (!s.empty()) { int now = hashMap[*s.begin()]; s.erase(s.begin()); cnt++; printf("%d", hash[now]); if (cnt != num) { printf(" "); } for (int v = 0; v < n; v++) { if (G[now][v] != 0) { if (--Indegree[v] == 0) { s.insert(hash[v]); } } } } }