10-排序6 Sort with Swap(0, i) (25 分)
Given any permutation of the numbers {0, 1, 2,..., N−1}, it is easy to sort them in increasing order. But what if Swap(0, *)
is the ONLY operation that is allowed to use? For example, to sort {4, 0, 2, 1, 3} we may apply the swap operations in the following way:
Swap(0, 1) => {4, 1, 2, 0, 3}
Swap(0, 3) => {4, 1, 2, 3, 0}
Swap(0, 4) => {0, 1, 2, 3, 4}
Now you are asked to find the minimum number of swaps need to sort the given permutation of the first N nonnegative integers.
Input Specification:
Each input file contains one test case, which gives a positive N (≤10^5) followed by a permutation sequence of {0, 1, ..., N−1}. All the numbers in a line are separated by a space.
Output Specification:
For each case, simply print in a line the minimum number of swaps need to sort the given permutation.
Sample Input:
10
3 5 7 2 6 4 9 0 8 1
Sample Output:
9
#include<cstdio> #include<algorithm> using namespace std; const int maxn = 100010; int main() { int n; int num; //数组存储方式调换,便于交换arr[0]和arr[arr[0]] int arr[maxn] = {0}; scanf("%d",&n); int left = n - 1; //控制循环次数,需要交换数的个数,0除外 for (int i = 0; i < n; i++) { scanf("%d",&num); arr[num] = i; if (num == i && num != 0) { left--; } } int k = 1; //如果排序还未最终完成但是 0 已经回到arr[0]处,交换arr[k]值 int ans = 0; //纪录交换的次数 while (left > 0) { if (arr[0] == 0) { while (k < n) { if (arr[k] != k) { swap(arr[0], arr[k]); ans++; break; } k++; } } else { swap(arr[0], arr[arr[0]]); ans++; left--; } } printf("%d", ans); return 0; }