11-散列4 Hashing - Hard Version (30 分)
Given a hash table of size N, we can define a hash function (. Suppose that the linear probing is used to solve collisions, we can easily obtain the status of the hash table with a given sequence of input numbers.
However, now you are asked to solve the reversed problem: reconstruct the input sequence from the given status of the hash table. Whenever there are multiple choices, the smallest number is always taken.
Input Specification:
Each input file contains one test case. For each test case, the first line contains a positive integer N (≤), which is the size of the hash table. The next line contains N integers, separated by a space. A negative integer represents an empty cell in the hash table. It is guaranteed that all the non-negative integers are distinct in the table.
Output Specification:
For each test case, print a line that contains the input sequence, with the numbers separated by a space. Notice that there must be no extra space at the end of each line.
Sample Input:
11
33 1 13 12 34 38 27 22 32 -1 21
Sample Output:
1 13 12 21 33 34 38 27 22 32
//参考 #include <iostream> #include <vector> #include <queue> using namespace std; const int N = 1000; int num[N], indegree[N]; struct cmp { bool operator()(int i, int j) { return num[i] > num[j]; } }; int main() { int i, j, n, m, k, flag = 0; scanf("%d", &n); vector<vector<int> > g(n); priority_queue<int, vector<int>, cmp> q; for (i = 0; i < n; i++) scanf("%d", &num[i]); for (i = 0; i < n; i++) { if (num[i] > 0) { k = num[i] % n; indegree[i] = (i + n - k) % n; if (indegree[i]) { for (j = 0; j <= indegree[i]; j++) g[(k + j) % n].push_back(i); } else q.push(i); } } while (!q.empty()) { i = q.top(); q.pop(); if (!flag) { flag = 1; printf("%d", num[i]); } else printf(" %d", num[i]); for (j = 0; j < g[i].size(); j++) { if (--indegree[g[i][j]] == 0) q.push(g[i][j]); } } return 0; }