函数的单调性定义的延伸应用
前言
函数的单调性有好多有用的结论,理解并灵活应用有助于我们的解题。
相关结论
- 结论1:已知函数\(f(x)\),\(g(x)\)在区间\(D\)上单调递增(或减),则\(F(x)=f(x)+g(x)\)在\(D\)上单调递增(或减);
证明:任取\(x_1<x_2\in D\),则由\(f(x)\),\(g(x)\)在\(D\)上单调递增,
则\(f(x_1)<f(x_2)\),\(g(x_1)<g(x_2)\),
\(F(x_1)-F(x_2)=f(x_1)+g(x_1)-[f(x_2)+g(x_2)]\)
\(=f(x_1)-f(x_2)+g(x_1)-g(x_2)<0\),
即函数\(F(x)=f(x)+g(x)\)在\(D\)上单调递增;
同理可证,函数\(f(x)\),\(g(x)\)在区间\(D\)上单调递减,则\(F(x)=f(x)+g(x)\)在\(D\)上单调递减;
简单应用:比如\(y=x\)在\(R\)上单调递增,\(y=x^3\)在\(R\)上单调递增,
则\(y=x+x^3\)在\(R\)上就单调递增,这一性质就能帮助我们理解和掌握更多函数的性质。
- 结论2:已知函数\(f(x)\)在区间\(D\)上单调递增,\(g(x)\)在区间\(D\)上单调递减,则\(F(x)=f(x)-g(x)\)在\(D\)上单调递增;
证明:仿上完成。
简单应用:比如\(y=x\)在\((0,+\infty)\)上单调递增,\(y=\cfrac{1}{x}\)在\((0,+\infty)\)上单调递减,
则函数\(y=x-\cfrac{1}{x}\)在区间\((0,+\infty)\)上单调递增。
- 结论3:已知函数\(f(x)\),\(g(x)\)在区间\(D\)上单调递增,且\(f(x)>0\),\(g(x)>0\), 则\(H(x)=f(x)\cdot g(x)\)在\(D\)上单调递增;
证明:任取\(x_1<x_2\in D\),则由\(f(x)\),\(g(x)\)在\(D\)上单调递增,
则\(f(x_1)<f(x_2)\),\(g(x_1)<g(x_2)\),
即\(f(x_1)-f(x_2)<0\),\(g(x_1)-g(x_2)<0\),
\(H(x_1)-H(x_2)=f(x_1)\cdot g(x_1)-f(x_2)\cdot g(x_2)\)
\(=f(x_1)\cdot g(x_1)-f(x_1)\cdot g(x_2)-[f(x_2)\cdot g(x_2)-f(x_1)\cdot g(x_2)]\)
\(=f(x_1)\cdot [g(x_1)-g(x_2)]-g(x_2)\cdot[f(x_2)-f(x_1)]\),
\(=f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]\),
由于\(f(x_1)-f(x_2)<0\),\(g(x_1)-g(x_2)<0\),且\(f(x)>0\),\(g(x)>0\),
则上式\(f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]<0\),
即\(H(x_1)-H(x_2)<0\)
即函数\(H(x)=f(x)+g(x)\)在\(D\)上单调递增;
简单应用:函数\(f(x)=x\),\(g(x)=e^x\)在区间\((0,+\infty)\)上单调递增,且\(f(x)>0\),\(g(x)>0\),
则\(H(x)=x\cdot e^x\)在\((0,+\infty)\)上单调递增;
- 结论4:已知函数\(f(x)\),\(g(x)\)在区间\(D\)上单调递减,且\(f(x)>0\),\(g(x)>0\), 则\(H(x)=f(x)\cdot g(x)\)在\(D\)上单调递减;
证明:任取\(x_1<x_2\in D\),则由\(f(x)\),\(g(x)\)在\(D\)上单调递减,
则\(f(x_1)>f(x_2)\),\(g(x_1)>g(x_2)\),
即\(f(x_1)-f(x_2)>0\),\(g(x_1)-g(x_2)>0\),
\(H(x_1)-H(x_2)=f(x_1)\cdot g(x_1)-f(x_2)\cdot g(x_2)\)
\(=f(x_1)\cdot g(x_1)-f(x_1)\cdot g(x_2)-[f(x_2)\cdot g(x_2)-f(x_1)\cdot g(x_2)]\)
\(=f(x_1)\cdot [g(x_1)-g(x_2)]-g(x_2)\cdot[f(x_2)-f(x_1)]\),
\(=f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]\),
由于\(f(x_1)-f(x_2)>0\),\(g(x_1)-g(x_2)>0\),且\(f(x)>0\),\(g(x)>0\),
则上式\(f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]>0\),
即\(H(x_1)-H(x_2)>0\)
即函数\(H(x)=f(x)+g(x)\)在\(D\)上单调递减;
- 结论5:已知函数\(f(x)\),\(g(x)\)在区间\(D\)上单调递减,且\(f(x)<0\),\(g(x)<0\), 则\(H(x)=f(x)\cdot g(x)\)在\(D\)上单调递增;
证明:任取\(x_1<x_2\in D\),则由\(f(x)\),\(g(x)\)在\(D\)上单调递减,
则\(f(x_1)>f(x_2)\),\(g(x_1)>g(x_2)\),
即\(f(x_1)-f(x_2)>0\),\(g(x_1)-g(x_2)>0\),
\(H(x_1)-H(x_2)=f(x_1)\cdot g(x_1)-f(x_2)\cdot g(x_2)\)
\(=f(x_1)\cdot g(x_1)-f(x_1)\cdot g(x_2)-[f(x_2)\cdot g(x_2)-f(x_1)\cdot g(x_2)]\)
\(=f(x_1)\cdot [g(x_1)-g(x_2)]-g(x_2)\cdot[f(x_2)-f(x_1)]\),
\(=f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]\),
由于\(f(x_1)-f(x_2)>0\),\(g(x_1)-g(x_2)>0\),且\(f(x)<0\),\(g(x)<0\),
则上式\(f(x_1)\cdot [g(x_1)-g(x_2)]+g(x_2)\cdot [f(x_1)-f(x_2)]<0\),
即\(H(x_1)-H(x_2)<0\),
即函数\(H(x)=f(x)+g(x)\)在\(D\)上单调递增;