斐波那契数列
前情概要
斐波那契数列又称黄金分割数列,因数学家列昂纳多·斐波那契(Leonardoda Fibonacci)以兔子繁殖为例子而引入,故又称为“兔子数列”,指的是数列 \(1\) , \(1\) , \(2\) , \(3\) , \(5\) , \(8\) , \(13\) , \(\cdots\),在数学上,斐波纳契数列以递归的方法定义 \(a_1=1\),\(a_2=1\),且满足 \(a_{n+1}\) \(=\) \(a_n\) \(+\) \(a_{n-1}\),\(n\) \(\geqslant\) \(2\);[1]
图象绘制
通项公式
- 斐波那契数列 \(\{a_n\}\) 的递推关系式满足条件:\(a_n=\left\{\begin{array}{l}1,&n=1\\1,&n=2\\a_{n-1}+a_{n-2},&n\geq 3\end{array}\right.\),其通项公式如下:
详细求解过程,请参阅斐波那契数列通项公式的求解
黄金分割比
斐波那契数列与黄金分割比,直接给结论:斐波那契数列相邻项比值的极限是 \(0.618\),意思就是随着斐波那契数列越来越大,相邻两项的比值越来越接近 \(0.618\),证明也非常简单,只要有大学高数的极限知识即可 。
由于 \(a_{n+2}=a_{n+1}+a_{n}\),两边同除以 \(a_{n+1}\),得到
\(\cfrac{a_{n+2}}{a_{n+1}}=1+\cfrac{a_{n}}{a_{n+1}}\;\;(\ast)\),假设其极限存在,令其为 \(Q\),
由于 \(\lim\limits_{n\rightarrow \infty}\cfrac{a_{n+2}}{a_{n+1}}=Q\), \(\lim\limits_{n\rightarrow \infty}\cfrac{a_{n+1}}{a_{n}}=Q\),
所以 \((\ast)\) 式 等价于 \(Q=1+\cfrac{1}{Q}\),
解得,\(Q=\cfrac{1\pm\sqrt{5}}{2}\),舍去负值,则 \(\cfrac{1}{Q}=\cfrac{2}{1+\sqrt{5}}=\cfrac{\sqrt{5}-1}{2}\)\(\approx 0.618\) .
即斐波那契数列相邻项比值[后项与相邻前项之比]的极限是 \(0.618\) .
http://www.matrix67.com/blog/archives/5221
典例剖析
解法1️⃣:【学科网的解答方法】因为当 \(x<3\) 时, \(f(x)=x\),所以 \(f(1)=1\),\(f(2)=2\),又因为 \(f(x)\)\(>\)\(f(x-1)\)\(+\)\(f(x-2)\),
则 \(f(3)\)\(>\)\(f(2)\)\(+\)\(f(1)\)\(=\)\(3\),\(f(4)\)\(>\)\(f(3)\)\(+\)\(f(2)\)\(>\)\(5\),
\(f(5)\)\(>\)\(f(4)\)\(+\)\(f(3)\)\(>\)\(8\), \(f(6)\)\(>\)\(f(5)\)\(+\)\(f(4)\)\(>\)\(13\), \(f(7)\)\(>\)\(f(6)\)\(+\)\(f(5)\)\(>\)\(21\),
\(f(8)\)\(>\)\(f(7)\)\(+\)\(f(6)\)\(>\)\(34\), \(f(9)\)\(>\)\(f(8)\)\(+\)\(f(7)\)\(>\)\(55\), \(f(10)\)\(>\)\(f(9)\)\(+\)\(f(8)\)\(>\)\(89\),
\(f(11)\)\(>\)\(f(10)\)\(+\)\(f(9)\)\(>\)\(144\),\(f(12)\)\(>\)\(f(11)\)\(+\)\(f(10)\)\(>\)\(233\),\(f(13)\)\(>\)\(f(12)\)\(+\)\(f(11)\)\(>\)\(377\)
\(f(14)\)\(>\)\(f(13)\)\(+\)\(f(12)\)\(>\)\(610\),\(f(15)\)\(>\)\(f(14)\)\(+\)\(f(13)\)\(>\)\(987\),
\(f(16)\)\(>\)\(f(15)\)\(+\)\(f(14)\)\(>\)\(1597\)\(>\)\(1000\),则依次下去可知 \(f(20)\)\(>\)\(1000\),则 \(B\) 正确;且无证据表明 \(ACD\) 一定正确,故选: \(B\).
解法2️⃣:如果对斐波那契数列比较熟悉的话,由 \(x\)\(<\)\(3\) 时 \(f(x)\)\(=\)\(x\),得到 \(f(1)=1\),\(f(2)=2\),且 \(f(x)\)\(>\)\(f(x-1)\)\(+\)\(f(x-2)\),将其中的 >
改为 =
,则所考查的就是斐波那契数列的相关知识,由已知条件我们可以自行写出下面的数列[斐波那契数列的一部分,没有第一项]:
再将上述的斐波那契数列的部分数列,将其中的 =
改为 >
,即
这样能很容易的判断,选项 \(AD\) 是错误的,选项 \(B\) 是一定正确的,选项 \(C\) 的正误不好判断,由于是单选题,对比之下,只能选 \(B\) .
分析:本题目涉及到的数列为“斐波那契数列”,其构成规律为:\(a_1=1\),\(a_2=1\)已知,其他项由递推公式\(a_{n+2}\)\(=\)\(a_{n+1}\)\(+\)\(a_n\),\(n\in N^*\)得到,
故\(a_6=8\),\(a_7=13\),\(a_8=21\),\(a_9=34\),\(a_{10}=55\),\(a_{11}=89\),故选\(D\)。
解析: 因为 \(a_{1}\)\(=\)\(a_{2}\)\(=\)\(1\) ,所以
\(1\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{2}\)\(+\)\(a_{3}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{4}\)\(+\)\(a_{5}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(a_{6}\)\(+\)\(a_{7}\)\(+\)\(a_{9}\)\(+\)\(\cdots\)\(+\)\(a_{2021}\)
\(=\)\(\cdots\)\(+\)\(a_{2019}\)\(+\)\(a_{2021}\)
\(=\)\(a_{2020}\)\(+\)\(a_{2021}\)\(=\)\(a_{2022}\) ,故选 \(C\) .
相关延申
函数的周期,\(f(x+2)=f(x+1)-f(x)\),求周期;