逆天的数学 | 数学科普
前言
所有自然数相加为多少呢,即 \(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\)\(=\)\(?\),估计我们都会说是 \(+\infty\),但数学家说 \(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\)\(=\)\(-\cfrac{1}{12}\),那么数学家到底是如何计算的呢?以下是经过了好多数学大咖用了好长时间沉淀下来的最简计算过程,由此各位可以感悟到,有限范畴内的东西和无限范畴内的东西不一定是相通的,具体情况大家自行体会:
相关储备
解: \(S=1-1+1-1+1-1+1-1+\cdots\) 这个式子的右边从第二项开始,统一提取一个负号,得到下面的式子;在下面的式子中,括号里面的表达式和原来的 \(S\)一模一样
即,\(S=\)\(1-(1-1+1-1+1-1+1-1+\cdots)\)
则 \(S=1-S\),解得 \(S=\cfrac{1}{2}\) .
详解过程
解:令 \(S_1=\)\(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\) ①
再令 \(\quad\)\(S_2=\)\(1\)\(-\)\(2\)\(+\)\(3\)\(-\)\(4\)\(+\)\(5\)\(-\)\(6\)\(+\)\(\cdots\) ②
①-② 得到,\(S_1\)\(-\)\(S_2\)\(=\)\(4\)\(+\)\(8\)\(+\)\(12\)\(+\)\(16\)\(+\)\(\cdots\)$=$4(\(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\))\(=\) \(4S_1\)
即 \(-3S_1=S_2\), 则 \(S_1=-\cfrac{1}{3}S_2\),以下重点求解 \(S_2\),
由于 \(S_2\)\(=\)\(1\)\(-\)\(2\)\(+\)\(3\)\(-\)\(4\)\(+\)\(5\)\(-\)\(6\)\(+\)\(\cdots\)
则 \(\quad\)\(S_2\)$=$0+\(1\)\(-\)\(2\)\(+\)\(3\)\(-\)\(4\)\(+\)\(5\)\(-\)\(6\)\(+\)\(\cdots\) \(\quad\) 此处用 \(0\) 补位,是为了错位相加,
则 \(2S_2=1-1+1-1+1-1+1-1+\cdots\),
而由上题我们知道式子的右边的结果,\(1-1+1-1+1-1+1-1+\cdots=\cfrac{1}{2}\),
故 \(2S_2=\cfrac{1}{2}\), \(S_2=\cfrac{1}{4}\),代入 \(S_1=-\cfrac{1}{3}S_2\),
可得到, \(S_1=-\cfrac{1}{12}\),即 \(1\)\(+\)\(2\)\(+\)\(3\)\(+\)\(4\)\(+\)\(5\)\(+\)\(6\)\(+\)\(\cdots\)\(=\)\(-\cfrac{1}{12}\),逆天吧 .