中奖与抽奖次序无关
前言
在我们常规的认知里,抽奖要越早越好,要是抽的晚,就没有奖了,但实际上是这样吗?
典例剖析
(1). 在两种摸球方式下分别计算事件 \(A_{1}\), \(A_{2}\), \(A_{3}\) 发生的概率的大小关系 .
解:有放回的情况下:
计算\(P(A_1)\)时, \(n(\Omega_{1})\)\(=\)\(C_{10}^1\)\(=\)\(10\),满足有限等可能性,\(n(A_1)\)\(=\)\(C_{4}^1\)\(=\)\(4\),故 \(P(A_1)\)\(=\)\(\cfrac{4}{10}=0.4\);
采用古典概型计算 \(P(A_2)\) 时, \(n(\Omega_{2})\)\(=\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(=\)\(100\),满足有限等可能性,\(n(A_2)\)\(=\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(=\)\(40\)[包括第一次取到白球第二次取到红球和包括第一次取到红球第二次取到红球两种情况],故 \(P(A_2)\)\(=\)\(\cfrac{40}{100}\)\(=\)\(0.4\);
简化计算模型,采用相互独立事件计算 \(P(A_2)\) ,令前半次取到白球为 \(A\),后半次取到红球为 \(B\),则 \(P(A)\)\(=\)\(\cfrac{6}{10}\), \(P(B)\)\(=\)\(\cfrac{4}{10}\), 前半次取到红球为\(P(\bar{A})\)\(=\)\(\cfrac{4}{10}\), 后半次取到白球为 \(P(\bar{B})\)\(=\)\(\cfrac{6}{10}\),则 \(A_2=AB\cup\bar{A}B\),且 \(A\)、\(B\)相互独立[原因:\(P(AB)\)\(=\)\(\cfrac{24}{100}\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)], \(\bar{A}\)、\(B\)相互独立,\(AB\) 和 \(\bar{A}B\)彼此互斥,
故 \(P(A_2)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(=\)\(\cfrac{2}{5}\)\(=\)\(0.4\),
计算\(P(A_3)\)时, \(n(\Omega_{3})\)\(=\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(\times\)\(C_{10}^1\)\(=\)\(1000\),满足有限等可能性,\(n(A_3)\)\(=\)\(C_{6}^1\)\(\times\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{6}^1\)\(\times\)\(C_{4}^1\)\(+\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(\times\)\(C_{4}^1\)\(=\)\(400\)[包括一白二白三红,一白二红三红,一红二白三红,一红二红三红共四种情况],故 \(P(A_3)\)\(=\)\(\cfrac{400}{1000}\)\(=\)\(0.4\);
简化计算模型,故 \(P(A_3)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{10}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{4}{10}\)\(=\)\(0.4\),
无放回的情况下:
\(P(A_1)\)\(=\)\(\cfrac{4}{10}=0.4\);
\(P(A_2)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{9}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{3}{9}\)\(=\)\(\cfrac{2}{5}\)\(=\)\(0.4\), 相关说明[1]
\(P(A_3)\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{5}{9}\)\(\times\)\(\cfrac{4}{8}\)\(+\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{9}\)\(\times\)\(\cfrac{3}{8}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{6}{9}\)\(\times\)\(\cfrac{3}{8}\)\(+\)\(\cfrac{4}{10}\)\(\times\)\(\cfrac{3}{9}\)\(\times\)\(\cfrac{2}{8}\)\(=\)\(0.4\),
【解后反思】:1、由解题结果可知,不管是否有放回,第 \(1\)(\(2\)、\(3\))次抽到红球的概率都是相同的;人教 2019A 版教材将简单随机抽样分为放回简单随机抽样和不放回简单随机抽样,其中两种抽样方法都是等概率抽样,即每一个个体被抽到的概率都相等,参见难点剖析
2、如果用 \(4\) 个红球代表 \(4\) 个奖品,则说明不管是否有放回,第 \(1\)(\(2\)、\(3\))次抽到奖品的概率都是相同的;说明是否中奖和抽奖的次序是无关的,不是说你第一个抽奖,你的中奖概率就大,你最后一个抽奖,你的中奖概率就小,重要的是运气,或者我们常开玩笑说是人品 .
这个题目的求解也可以用两个思路:其一,采用古典概型的方法,\(P(A_2)\)\(=\)\(\cfrac{n(A_2)}{n(\Omega_2)}\)\(=\)\(\cfrac{6\times 4+4\times 3}{10\times 9}\)\(=\)\(\cfrac{2}{5}\)\(=\)\(0.4\);
其二,也可以采用相互独立事件计算 \(P(A_2)\) ,令前半次取到白球为 \(A\),后半次取到红球为 \(B\),则 \(P(A)\)\(=\)\(\cfrac{6}{10}\), \(P(B)\)\(=\)\(\cfrac{4}{9}\), 前半次取到红球为\(P(\bar{A})\)\(=\)\(\cfrac{4}{10}\), 后半次取到白球为 \(P(\bar{B})\)\(=\)\(\cfrac{3}{9}\),则 \(A_2=AB\cup\bar{A}B\),且 \(A\)、\(B\)相互独立[原因:\(P(AB)\)\(=\)\(\cfrac{24}{90}\)\(=\)\(\cfrac{6}{10}\)\(\times\)\(\cfrac{4}{9}\),此处极容易出错,由于是无放回,我们一般根据题意常常会判断它们不是相互独立的,但是用定义判断是相互独立的], \(\bar{A}\)、\(B\)相互独立,\(AB\) 和 \(\bar{A}B\)彼此互斥, ↩︎