烧脑问题收集
前言
求解思路比较独特,故做以收集。
典例剖析
解:由 \(a^3=b^2\),变形得到 \(a\cdot a^2=b^2\),故 \(a=\cfrac{b^2}{a^2}\);
同理,由 \(c^5=d^4\),变形得到 \(c\cdot c^4=d^4\),故 \(c=\cfrac{d^4}{c^4}\);
又由 \(c-a=77\),即 \(\cfrac{d^4}{c^4}-\cfrac{b^2}{a^2}=77\),则 \((\cfrac{d^2}{c^2})^2-(\cfrac{b}{a})^2=77\)
故 \((\cfrac{d^2}{c^2}+\cfrac{b}{a})\cdot(\cfrac{d^2}{c^2}-\cfrac{b}{a})=77=11\times7\), [1]
又由于 \(\cfrac{d^2}{c^2}+\cfrac{b}{a}>\cfrac{d^2}{c^2}-\cfrac{b}{a}\),故得到方程组如下:
\(\left\{\begin{array}{l}{\cfrac{d^2}{c^2}+\cfrac{b}{a}=11 ①}\\{\cfrac{d^2}{c^2}-\cfrac{b}{a}=7 ②}\end{array}\right.\quad\)
\(① + ②\) 得到,\(d^2=9c^2\),则 \(d=3c\),
\(① - ②\) 得到,\(b=2a\),
由 \(c^5=d^4\),则 \(c^5=81c^4\),解得 \(c=81\),
由 \(c-a=77\),解得 \(a=4\),则 \(b=8\),\(d=3\times81=243\),
故 \(d-b=243-8=235\) .
解析: 对于选项 \(A\) 而言,如图,由 \(S_A\cdot\overrightarrow{MA}\)\(+\)\(S_B\cdot \overrightarrow{MB}\)\(+\)\(S_C\cdot \overrightarrow{MC}\)\(=\)\(\vec{0}\) ,且 \(S_A:S_B:S_C\)=\(1:1:1\),令 \(S_A=S_B=S_C=k\),代入已知条件,约分得到,
则 \(\overrightarrow{MA}\)\(+\)\(\overrightarrow{MB}\)\(+\)\(\overrightarrow{MC}\)\(=\)\(\vec{0}\) ,则 \(M\) 为三角形的重心。故 \(A\) 正确;
对于选项 \(B\) 而言,由于点 \(M\) 为\(\triangle\)\(ABC\)的内心, 是三角形的三条角平分线的交点,如图,
由 \(S_A\cdot\overrightarrow{MA}\)\(+\)\(S_B\cdot \overrightarrow{MB}\)\(+\)\(S_C\cdot \overrightarrow{MC}\)\(=\)\(\vec{0}\) ,
又 \(S_A=\cfrac{1}{2}BC\times r\),\(S_B=\cfrac{1}{2}AC\times r\),\(S_C=\cfrac{1}{2}AB\times r\),
即 \(\cfrac{1}{2}BC\times r\times\cdot\overrightarrow{MA}\)\(+\)\(\cfrac{1}{2}AC\times r\times\cdot \overrightarrow{MB}\)\(+\)\(\cfrac{1}{2}AB\times r\times\cdot \overrightarrow{MC}\)\(=\)\(\vec{0}\) ,约分整理得到,
\(BC\)\(\cdot\)\(\overrightarrow{MA}\)\(+\)\(AC\)\(\cdot\)\(\overrightarrow{MB}\)\(+\)\(AB\)\(\cdot\)\(\overrightarrow{MC}\)\(=\)\(\vec{O}\),故 \(B\) 正确;
对于选项 \(C\) 而言,由于点 \(M\) 为\(\triangle\)\(ABC\)的外心,则点 \(M\) 为三条边的中垂线的交点,且 \(MA\)\(=\)\(MB\)\(=\)\(MC\)\(=\)\(R\),如图由 \(\angle1\)\(+\)\(\angle2\)\(=\)\(75^{\circ}\), \(\angle2\)\(+\)\(\angle3\)\(=\)\(45^{\circ}\), \(\angle1\)\(+\)\(\angle3\)\(=\)\(60^{\circ}\),可以求得 \(\angle1\)\(=\)\(45^{\circ}\), \(\angle2\)\(=\)\(30^{\circ}\), \(\angle3\)\(=\)\(15^{\circ}\),故 \(\angle\)\(BMC\)\(=\)\(90^{\circ}\),\(\angle\)\(CMA\)\(=\)\(120^{\circ}\),\(\angle\)\(AMB\)\(=\)\(150^{\circ}\),
则由三角形面积公式可知,\(S_{A}=\cfrac{1}{2}\times R^2\times\sin 90^{\circ}\),
\(S_{B}=\cfrac{1}{2}\times R^2\times\sin 120^{\circ}\),\(S_{C}=\cfrac{1}{2}\times R^2\times\sin 150^{\circ}\),
故 \(S_{A}:S_{B}:S_{C}=\sin 90^{\circ}:\sin 120^{\circ}:\sin 150^{\circ}=1:\cfrac{\sqrt{3}}{2}:\cfrac{1}{2}=2:\sqrt{3}:1\),故 \(C\) 错误;
对于选项 \(D\) 而言,由于点 \(M\) 为\(\triangle\)\(ABC\)的垂心,是三角形的三条高线的交点,如图,
由题目\(S_A\cdot\overrightarrow{MA}\)\(+\)\(S_B\cdot \overrightarrow{MB}\)\(+\)\(S_C\cdot\overrightarrow{MC}\)\(=\)\(\vec{0}\) ,又\(3\overrightarrow{MA}\)\(+\)\(4\overrightarrow{MB}\)\(+\)\(5\overrightarrow{MC}\)\(=\)\(\vec{0}\),则可知 \(S_A:S_B:S_C\)=\(3:4:5\),故 \(\cfrac{S_{A}}{S_A+S_B+S_C}\)\(=\)\(\cfrac{3}{3+4+5}\)\(=\)\(\cfrac{1}{4}\),故 \(\cfrac{MD}{AD}\)\(=\)\(\cfrac{1}{4}\),同理可得, \(\cfrac{MF}{BF}\)\(=\)\(\cfrac{1}{3}\),故可设,\(MD=m\),\(AM=3m\),\(MF=n\),\(BM=2n\),
在 \(Rt\triangle BMD\) 中,由 \(\cos\angle BMD=\cfrac{m}{2n}=\cos\angle AMF=\cfrac{n}{3m}\),故得到 \(3m^2=2n^2\),即 \(n=\cfrac{\sqrt{6}}{2}m\),
则 \(\cos\angle BMD=\cfrac{m}{2n}=\cfrac{\sqrt{6}}{6}\),故 \(\cos\angle AMB=\cos(\pi-\angle BMD)=-\cfrac{\sqrt{6}}{6}\) . 故 \(D\) 正确;
综上所述,选 \(ABD\);
当然,也可以这样分解 \(77=77\times1\),仿照题目的求解思路,得到 \(d^2=39c^2\),即 \(d=\sqrt{39}c\),不符合 \(a\),\(b\),\(c\),\(d\) 是正整数的要求,故这种分解 \(77=77\times1\)就排除了。 ↩︎