比例知识

前言

注意引入非零比例因子的技巧的运用;

比例性质

  • 合比定理

如果\(\cfrac{a}{b}=\cfrac{c}{d}\),那么\(\cfrac{a+b}{b}=\cfrac{c+d}{d}\),其中\(b,d\neq 0\)

证法1:由题目可知,\(\cfrac{a}{b}+1=\cfrac{c}{d}+1\),整理得到\(\cfrac{a+b}{b}=\cfrac{c+d}{d}\)

证法2:令\(\cfrac{a}{b}=\cfrac{c}{d}=k\),则\(a=bk\)\(c=dk\),代入得到

\(\cfrac{a+b}{b}=\cfrac{bk+b}{b}=k+1\)\(\cfrac{c+d}{d}=\cfrac{dk+d}{d}=k+1\)

\(\cfrac{a+b}{b}=\cfrac{c+d}{d}\)

  • 分比定理

如果\(\cfrac{a}{b}=\cfrac{c}{d}\),那么\(\cfrac{a-b}{b}=\cfrac{c-d}{d}\),其中\(b,d\neq 0\)

证法1:由题目可知,\(\cfrac{a}{b}-1=\cfrac{c}{d}-1\),整理得到\(\cfrac{a-b}{b}=\cfrac{c-d}{d}\)

证法2:同上;

  • 合分比定理

如果\(\cfrac{a}{b}=\cfrac{c}{d}\),那么\(\cfrac{a+b}{a-b}=\cfrac{c+d}{c-d}\),其中\(b,d,a-b,c-d\neq 0\)

证明:令\(\cfrac{a}{b}=\cfrac{c}{d}=k\),则\(a=bk\)\(c=dk\)

\(\cfrac{a+b}{a-b}=\cfrac{bk+b}{bk-b}=\cfrac{k+1}{k-1}\)\(\cfrac{c+d}{c-d}=\cfrac{dk+d}{dk-d}=\cfrac{k+1}{k-1}\)

\(\cfrac{a+b}{a-b}=\cfrac{c+d}{c-d}\)

  • 更比定理

如果\(\cfrac{a}{b}=\cfrac{c}{d}\),那么\(\cfrac{a}{c}=\cfrac{b}{d}\),其中\(a,b,c,d\neq 0\)

证明:令\(\cfrac{a}{b}=\cfrac{c}{d}=k\),则\(a=bk\)\(c=dk\),代入得到

\(\cfrac{a}{c}=\cfrac{bk}{dk}=\cfrac{b}{d}\);即\(\cfrac{a}{c}=\cfrac{b}{d}\)

应用举例

\(\triangle ABC\)中,\(\cfrac{a}{sinA}=\cfrac{a+b-c}{sinA+sinB-sinC}\)

证明:引入非零比例因子,如\(\cfrac{a}{sinA}=\cfrac{b}{sinB}=\cfrac{c}{sinC}=2R\)

\(a=2RsinA\)\(b=2RsinB\)\(c=2RsinC\),代入上式右端,得到

\(\cfrac{a+b-c}{sinA+sinB-sinC}=\cfrac{2R(sinA+sinB-sinC)}{sinA+sinB-sinC}=2R=\cfrac{a}{sinA}\)

故在\(\triangle ABC\)中,\(\cfrac{a}{sinA}=\cfrac{a+b-c}{sinA+sinB-sinC}\)成立;

同理,\(\cfrac{a}{sinA}=\cfrac{a+b+c}{sinA+sinB+sinC}\)\(\cfrac{a}{sinA}=\cfrac{a+b}{sinA+sinB}\)

【2016全国卷Ⅲ】已知\(\Delta ABC\)的内角为\(A、B、C\)\(2sinA=\sqrt{3}sinB=3sinC\),则\(cosB\)的值为多少?

分析:设\(2sinA=\sqrt{3}sinB=3sinC=k\)

\(sinA=\cfrac{k}{2}\)\(sinB=\cfrac{k}{\sqrt{3}}\)\(sinC=\cfrac{k}{3}\)

则有\(a:b:c=sinA:sinB:sinC\),即\(a:b:c=\cfrac{k}{2}:\cfrac{k}{\sqrt{3}}:\cfrac{k}{3}=3:2\sqrt{3}:2\)

由此再设得到\(a=3m\)\(b=2\sqrt{3}m\)\(a=2m(m>0)\)(引入非零比例因子的好处),

由余弦定理可知,\(cosB=\cfrac{a^2+c^2-b^2}{2ac}=\cfrac{9m^2+4m^2-12m^2}{2\cdot 3m\cdot 2m}=\cfrac{1}{12}\)

反思:1、灵活运用比例的性质,会大大简化运算;2、非零比例因子的引入,也要注意学习运用。

平行截割定理【线束定理,也叫平行线分线段成比例定理】:两条直线与一组平行线相交,它们被这组平行线截得的对应线段成比例.

如图所示,三条直线\(l_1//l_2//l_3\),三条平行线与直线\(m\)分别相交于点\(A\)\(B\)\(C\),与直线\(n\)分别相交于点\(D\)\(E\)\(F\),连结\(AE\)\(BD\)\(BF\)\(CE\)

根据平行线性质[等高]可得[利用等面积法],\(S_{\triangle ABE}=S_{\triangle DBE}\)\(S_{\triangle BEC}=S_{\triangle BEF}\)

\(\cfrac{S_{\triangle ABE}}{S_{\triangle DBE}}=\cfrac{S_{\triangle BEC}}{S_{\triangle BEF}}\),即\(\cfrac{S_{\triangle ABE}}{S_{\triangle BEC}}=\cfrac{S_{\triangle DBE}}{S_{\triangle BEF}}\)

根据等高三角形[\(\triangle ABE\)\(\triangle BCE\)从顶点\(E\)所作的高线相同]的面积比等于底边的比,可得

\[\cfrac{AB}{BC}=\cfrac{DE}{EF} \]

由更比性质、等比性质可得,\(\cfrac{AB}{DE}=\cfrac{BC}{EF}=\cfrac{AB+BC}{DE+EF}=\cfrac{AC}{DF}\).

平行线分线段成比例定理的逆定理:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.

【人教 2019A 版教材\(P_{189}\) 页习题 9.1 第 7 题】如果样本量是按照比例分配,第\(1\)\(2\)\(3\)层的个体数分别为\(L\)\(M\)\(N\),样本量分别为\(l\)\(m\)\(n\),证明:

\(\cfrac{L}{L+M+N}\bar{x}\)\(+\)\(\cfrac{M}{L+M+N}\bar{y}\)\(+\)\(\cfrac{N}{L+M+N}\bar{z}\)\(=\)\(\cfrac{l}{l+m+n}\bar{x}\)\(+\)\(\cfrac{m}{l+m+n}\bar{y}\)\(+\)\(\cfrac{n}{l+m+n}\bar{z}\)

证明:由于 \(\cfrac{l}{L}\)\(=\)\(\cfrac{m}{M}\)\(=\)\(\cfrac{n}{N}\)\(=\)\(\cfrac{l+m+n}{L+M+N}\)

\(\cfrac{l}{l+m+n}\)\(=\)\(\cfrac{L}{L+M+N}\)\(\cfrac{m}{l+m+n}\)\(=\)\(\cfrac{M}{L+M+N}\)\(\cfrac{n}{l+m+n}\)\(=\)\(\cfrac{N}{L+M+N}\)

故有 \(\cfrac{L}{L+M+N}\bar{x}\)\(+\)\(\cfrac{M}{L+M+N}\bar{y}\)\(+\)\(\cfrac{N}{L+M+N}\bar{z}\)\(=\)\(\cfrac{l}{l+m+n}\bar{x}\)\(+\)\(\cfrac{m}{l+m+n}\bar{y}\)\(+\)\(\cfrac{n}{l+m+n}\bar{z}\)

posted @ 2019-12-18 08:49  静雅斋数学  阅读(645)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋