三角模板函数使用示例
前言
模板函数1
- 核心的模板函数\(y=\sin x\),其性质如下:
定义域:\(x\in R\);
值 域:\(y=sinx\in [-1,1]\)
单调性:单增区间 \([2k\pi-\cfrac{\pi}{2},2k\pi+\cfrac{\pi}{2}](k\in Z)\); 单减区间 \([2k\pi+\cfrac{\pi}{2},2k\pi+\cfrac{3\pi}{2}](k\in Z)\);
奇偶性:奇函数;\(sin(-x)=-sinx\);
周期性:\(T=2\pi\);
对称性:对称轴方程 \(x=k\pi+\cfrac{\pi}{2}(k\in Z)\);对称中心 \((k\pi,0)(k\in Z)\);
零 点:\(x=k\pi (k\in Z)\);
最 值:\(x=2k\pi+\cfrac{\pi}{2}\)时,\(y_{max}=1\);\(x=2k\pi-\cfrac{\pi}{2}\)时,\(y_{min}=-1\);
五点法作图:
\(x\) | \(0\) | \(\cfrac{\pi}{2}\) | \(\pi\) | \(\cfrac{3\pi}{2}\) | \(2\pi\) |
---|---|---|---|---|---|
\(f(x)=sinx\) | \(0\) | \(1\) | \(0\) | \(-1\) | \(0\) |
\(点的坐标\) | \((0,0)\) | \((\cfrac{\pi}{2},1)\) | \((\pi,0)\) | \((\cfrac{3\pi}{2},-1)\) | \((2\pi,0)\) |
效果图如下:
使用示例
当研究清楚了上述的函数\(y=sinx\)的性质后,我们就能够以此为依托,研究更复杂的正弦型函数的各种性质了。
我们以\(y=2sin(2x+\cfrac{\pi}{6})+1\)为例子加以说明;
定义域
:\(x\in R\);
值域
:由于\(-1\leqslant sin(2x+\cfrac{\pi}{6})\leqslant 1\),
故\((-1)\times 2+1\leqslant 2sin(2x+\cfrac{\pi}{6})+1\leqslant 1\times 2+1\),即\(-1\leqslant y\leqslant 3\);
单调性
:由于\(2\)倍和后边的\(+1\)不影响单调性,故利用\(y=sin(2x+\cfrac{\pi}{6})\)求单调区间;
令\(2k\pi-\cfrac{\pi}{2}\leqslant 2x+\cfrac{\pi}{6}\leqslant 2k\pi+\cfrac{\pi}{2}\),\(k\in Z\),
解得单调递增区间为\([k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{6}]\),\((k\in Z)\);
令\(2k\pi+\cfrac{\pi}{2}\leqslant 2x+\cfrac{\pi}{6}\leqslant 2k\pi+\cfrac{3\pi}{2}\),\(k\in Z\),
解得单调递减区间为\([k\pi+\cfrac{\pi}{6},k\pi+\cfrac{2\pi}{3}]\),\((k\in Z)\);
奇偶性
:由于\(f(0)\neq 0\),且\(f(0)\)没有取到最值,故函数没有奇偶性;
周期性
:\(T=\cfrac{2\pi}{2}=\pi\);
对称性
:比如求对称轴方程,此时后边的\(+1\)不影响其对称性,前边的2倍也不影响,
故利用\(y=sin(2x+\cfrac{\pi}{6})\)求对称轴方程,
令\(2x+\cfrac{\pi}{6}=k\pi+\cfrac{\pi}{2}(k\in Z)\),解得对称轴方程为:\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{6}(k\in Z)\),
求对称中心,先利用\(y=sin(2x+\cfrac{\pi}{6})\)求对称中心,最后补充\(+1\);
令\(2x+\cfrac{\pi}{6}=k\pi(k\in Z)\),解得\(x=\cfrac{k\pi}{2}-\cfrac{\pi}{12}(k\in Z)\),
故对称中心坐标为\((\cfrac{k\pi}{2}-\cfrac{\pi}{12},1)(k\in Z)\)
零点
:令\(y=2sin(2x+\cfrac{\pi}{6})+1=0\),即\(sin(2x+\cfrac{\pi}{6})=-\cfrac{1}{2}\),
则\(2x+\cfrac{\pi}{6}=2k\pi-\cfrac{\pi}{6}(k\in Z)\)或\(2x+\cfrac{\pi}{6}=2k\pi-\cfrac{5\pi}{6}(k\in Z)\)
即\(x=k\pi-\cfrac{\pi}{6}(k\in Z)\)或\(x=k\pi-\cfrac{\pi}{2}(k\in Z)\),
最值
:\(y_{min}=-1\),\(y_{max}=3\)
五点法作图
五点法作图1
:自定周期的起止点;函数为\(f(x)=2sin(3x-\cfrac{\pi}{6})\)
\(x\) | $$\cfrac{\pi}{18}$$ | \(\cfrac{2\pi}{9}\) | \(\cfrac{7\pi}{18}\) | \(\cfrac{5\pi}{9}\) | $$\cfrac{13\pi}{18}$$ |
---|---|---|---|---|---|
\(3x-\cfrac{\pi}{6}\) | \(0\) | \(\cfrac{\pi}{2}\) | \(\pi\) | \(\cfrac{3\pi}{2}\) | \(2\pi\) |
\(sin(3x-\cfrac{\pi}{6})\) | \(0\) | \(1\) | \(0\) | \(-1\) | \(0\) |
\(f(x)\) | \(0\) | \(2\) | \(0\) | \(-2\) | \(0\) |
\(点的坐标\) | \((\cfrac{\pi}{18},0)\) | \((\cfrac{2\pi}{9},2)\) | \((\cfrac{7\pi}{18},0)\) | \((\cfrac{5\pi}{9},-2)\) | \((\cfrac{13\pi}{18},0)\) |
效果图如下:
五点法作图2
:自定周期的起止点;函数为\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\)
\(x\) | $$-\cfrac{\pi}{12}$$ | \(\cfrac{2\pi}{12}\)\(=\)\(\cfrac{\pi}{6}\) | \(\cfrac{5\pi}{12}\) | \(\cfrac{8\pi}{12}\)\(=\)\(\cfrac{2\pi}{3}\) | $$\cfrac{11\pi}{12}$$ |
---|---|---|---|---|---|
\(2x+\cfrac{\pi}{6}\) | \(0\) | \(\cfrac{\pi}{2}\) | \(\pi\) | \(\cfrac{3\pi}{2}\) | \(2\pi\) |
\(sin(2x+\cfrac{\pi}{6})\) | \(0\) | \(1\) | \(0\) | \(-1\) | \(0\) |
\(f(x)\) | \(1\) | \(3\) | \(1\) | \(-1\) | \(1\) |
\(点的坐标\) | \((-\cfrac{\pi}{12},1)\) | \((\cfrac{\pi}{6},3)\) | \((\cfrac{5\pi}{12},1)\) | \((\cfrac{2\pi}{3},-1)\) | \((\cfrac{11\pi}{12},1)\) |
效果图如下:
分析:在上题作图的基础上修正如下即可,
\(x\) | $$0$$ | \(\cfrac{2\pi}{12}\)\(=\)\(\cfrac{\pi}{6}\) | \(\cfrac{5\pi}{12}\) | \(\cfrac{8\pi}{12}\)\(=\)\(\cfrac{2\pi}{3}\) | $$\cfrac{11\pi}{12}$$ | \(\pi\) |
---|---|---|---|---|---|---|
\(2x+\cfrac{\pi}{6}\) | \(\cfrac{\pi}{6}\) | \(\cfrac{\pi}{2}\) | \(\pi\) | \(\cfrac{3\pi}{2}\) | \(2\pi\) | \(\cfrac{13\pi}{6}\) |
\(sin(2x+\cfrac{\pi}{6})\) | \(\cfrac{1}{2}\) | \(1\) | \(0\) | \(-1\) | \(0\) | \(\cfrac{1}{2}\) |
\(f(x)\) | \(2\) | \(3\) | \(1\) | \(-1\) | \(1\) | \(2\) |
\(坐标\) | \((0,2)\) | \((\cfrac{\pi}{6},3)\) | \((\cfrac{5\pi}{12},1)\) | \((\cfrac{2\pi}{3},-1)\) | \((\cfrac{11\pi}{12},1)\) | \((\pi,2)\) |
效果图如下:待整理;
模板函数2
- 核心的模板函数\(y=\cos x\),其性质如下:
定义域:\(x\in R\);
值 域:\(y=\cos x\in [-1,1]\)
单调性:单增区间 \([2k\pi-\pi,2k\pi](k\in Z)\); 单减区间 \([2k\pi,2k\pi+\pi](k\in Z)\);
奇偶性:奇函数;\(\cos(-x)=\cos x\);
周期性:\(T=2\pi\);
对称性:对称轴方程 \(x=k\pi(k\in Z)\);对称中心 \((k\pi+\cfrac{\pi}{2},0)(k\in Z)\);
零 点:\(x=k\pi+\cfrac{\pi}{2} (k\in Z)\);
最 值:\(x=2k\pi\)时,\(y_{max}=1\);\(x=2k\pi+\pi\)时,\(y_{min}=-1\);
五点法作图:
\(x\) | \(0\) | \(\cfrac{\pi}{2}\) | \(\pi\) | \(\cfrac{3\pi}{2}\) | \(2\pi\) |
---|---|---|---|---|---|
\(f(x)=\cos x\) | \(1\) | \(0\) | \(-1\) | \(0\) | \(1\) |
\(点的坐标\) | \((0,1)\) | \((\cfrac{\pi}{2},0)\) | \((\pi,-1)\) | \((\cfrac{3\pi}{2},0)\) | \((2\pi,1)\) |
效果图如下:
以下内容,有时间再编辑;
使用示例
当研究清楚了上述的函数\(y=sinx\)的性质后,我们就能够以此为依托,研究更复杂的正弦型函数的各种性质了。
我们以\(y=2sin(2x+\cfrac{\pi}{6})+1\)为例子加以说明;
定义域
:\(x\in R\);
值域
:由于\(-1\leqslant sin(2x+\cfrac{\pi}{6})\leqslant 1\),
故\((-1)\times 2+1\leqslant 2sin(2x+\cfrac{\pi}{6})+1\leqslant 1\times 2+1\),即\(-1\leqslant y\leqslant 3\);
单调性
:由于\(2\)倍和后边的\(+1\)不影响单调性,故利用\(y=sin(2x+\cfrac{\pi}{6})\)求单调区间;
令\(2k\pi-\cfrac{\pi}{2}\leqslant 2x+\cfrac{\pi}{6}\leqslant 2k\pi+\cfrac{\pi}{2}\),\(k\in Z\),
解得单调递增区间为\([k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{6}]\),\((k\in Z)\);
令\(2k\pi+\cfrac{\pi}{2}\leqslant 2x+\cfrac{\pi}{6}\leqslant 2k\pi+\cfrac{3\pi}{2}\),\(k\in Z\),
解得单调递减区间为\([k\pi+\cfrac{\pi}{6},k\pi+\cfrac{2\pi}{3}]\),\((k\in Z)\);
奇偶性
:由于\(f(0)\neq 0\),且\(f(0)\)没有取到最值,故函数没有奇偶性;
周期性
:\(T=\cfrac{2\pi}{2}=\pi\);
对称性
:比如求对称轴方程,此时后边的\(+1\)不影响其对称性,前边的2倍也不影响,
故利用\(y=sin(2x+\cfrac{\pi}{6})\)求对称轴方程,
令\(2x+\cfrac{\pi}{6}=k\pi+\cfrac{\pi}{2}(k\in Z)\),解得对称轴方程为:\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{6}(k\in Z)\),
求对称中心,先利用\(y=sin(2x+\cfrac{\pi}{6})\)求对称中心,最后补充\(+1\);
令\(2x+\cfrac{\pi}{6}=k\pi(k\in Z)\),解得\(x=\cfrac{k\pi}{2}-\cfrac{\pi}{12}(k\in Z)\),
故对称中心坐标为\((\cfrac{k\pi}{2}-\cfrac{\pi}{12},1)(k\in Z)\)
零点
:令\(y=2sin(2x+\cfrac{\pi}{6})+1=0\),即\(sin(2x+\cfrac{\pi}{6})=-\cfrac{1}{2}\),
则\(2x+\cfrac{\pi}{6}=2k\pi-\cfrac{\pi}{6}(k\in Z)\)或\(2x+\cfrac{\pi}{6}=2k\pi-\cfrac{5\pi}{6}(k\in Z)\)
即\(x=k\pi-\cfrac{\pi}{6}(k\in Z)\)或\(x=k\pi-\cfrac{\pi}{2}(k\in Z)\),
最值
:\(y_{min}=-1\),\(y_{max}=3\)
五点法作图
五点法作图
:自定周期的起止点;函数为\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\)
\(x\) | $$-\cfrac{\pi}{12}$$ | \(\cfrac{2\pi}{12}\)\(=\)\(\cfrac{\pi}{6}\) | \(\cfrac{5\pi}{12}\) | \(\cfrac{8\pi}{12}\)\(=\)\(\cfrac{2\pi}{3}\) | $$\cfrac{11\pi}{12}$$ |
---|---|---|---|---|---|
\(2x+\cfrac{\pi}{6}\) | \(0\) | \(\cfrac{\pi}{2}\) | \(\pi\) | \(\cfrac{3\pi}{2}\) | \(2\pi\) |
\(sin(2x+\cfrac{\pi}{6})\) | \(0\) | \(1\) | \(0\) | \(-1\) | \(0\) |
\(f(x)\) | \(1\) | \(3\) | \(1\) | \(-1\) | \(1\) |
\(点的坐标\) | \((-\cfrac{\pi}{12},1)\) | \((\cfrac{\pi}{6},3)\) | \((\cfrac{5\pi}{12},1)\) | \((\cfrac{2\pi}{3},-1)\) | \((\cfrac{11\pi}{12},1)\) |
效果图如下:
分析:在上题作图的基础上修正如下即可,
\(x\) | $$0$$ | \(\cfrac{2\pi}{12}\)\(=\)\(\cfrac{\pi}{6}\) | \(\cfrac{5\pi}{12}\) | \(\cfrac{8\pi}{12}\)\(=\)\(\cfrac{2\pi}{3}\) | $$\cfrac{11\pi}{12}$$ | \(\pi\) |
---|---|---|---|---|---|---|
\(2x+\cfrac{\pi}{6}\) | \(\cfrac{\pi}{6}\) | \(\cfrac{\pi}{2}\) | \(\pi\) | \(\cfrac{3\pi}{2}\) | \(2\pi\) | \(\cfrac{13\pi}{6}\) |
\(sin(2x+\cfrac{\pi}{6})\) | \(\cfrac{1}{2}\) | \(1\) | \(0\) | \(-1\) | \(0\) | \(\cfrac{1}{2}\) |
\(f(x)\) | \(2\) | \(3\) | \(1\) | \(-1\) | \(1\) | \(2\) |
\(坐标\) | \((0,2)\) | \((\cfrac{\pi}{6},3)\) | \((\cfrac{5\pi}{12},1)\) | \((\cfrac{2\pi}{3},-1)\) | \((\cfrac{11\pi}{12},1)\) | \((\pi,2)\) |
效果图如下:待整理;