静雅斋成就

更优秀的你

三角模板函数使用示例

前言

模板函数1

  • 核心的模板函数\(y=\sin x\),其性质如下:

定义域:\(x\in R\)

值 域:\(y=sinx\in [-1,1]\)

单调性:单增区间 \([2k\pi-\cfrac{\pi}{2},2k\pi+\cfrac{\pi}{2}](k\in Z)\); 单减区间 \([2k\pi+\cfrac{\pi}{2},2k\pi+\cfrac{3\pi}{2}](k\in Z)\)

奇偶性:奇函数;\(sin(-x)=-sinx\)

周期性:\(T=2\pi\)

对称性:对称轴方程 \(x=k\pi+\cfrac{\pi}{2}(k\in Z)\);对称中心 \((k\pi,0)(k\in Z)\)

零 点:\(x=k\pi (k\in Z)\)

最 值:\(x=2k\pi+\cfrac{\pi}{2}\)时,\(y_{max}=1\)\(x=2k\pi-\cfrac{\pi}{2}\)时,\(y_{min}=-1\)

五点法作图:

\(x\) \(0\) \(\cfrac{\pi}{2}\) \(\pi\) \(\cfrac{3\pi}{2}\) \(2\pi\)
\(f(x)=sinx\) \(0\) \(1\) \(0\) \(-1\) \(0\)
\(点的坐标\) \((0,0)\) \((\cfrac{\pi}{2},1)\) \((\pi,0)\) \((\cfrac{3\pi}{2},-1)\) \((2\pi,0)\)

效果图如下:

使用示例

当研究清楚了上述的函数\(y=sinx\)的性质后,我们就能够以此为依托,研究更复杂的正弦型函数的各种性质了。

我们以\(y=2sin(2x+\cfrac{\pi}{6})+1\)为例子加以说明;

定义域\(x\in R\)

值域:由于\(-1\leqslant sin(2x+\cfrac{\pi}{6})\leqslant 1\)

\((-1)\times 2+1\leqslant 2sin(2x+\cfrac{\pi}{6})+1\leqslant 1\times 2+1\),即\(-1\leqslant y\leqslant 3\)

单调性:由于\(2\)倍和后边的\(+1\)不影响单调性,故利用\(y=sin(2x+\cfrac{\pi}{6})\)求单调区间;

\(2k\pi-\cfrac{\pi}{2}\leqslant 2x+\cfrac{\pi}{6}\leqslant 2k\pi+\cfrac{\pi}{2}\)\(k\in Z\)

解得单调递增区间为\([k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{6}]\)\((k\in Z)\)

\(2k\pi+\cfrac{\pi}{2}\leqslant 2x+\cfrac{\pi}{6}\leqslant 2k\pi+\cfrac{3\pi}{2}\)\(k\in Z\)

解得单调递减区间为\([k\pi+\cfrac{\pi}{6},k\pi+\cfrac{2\pi}{3}]\)\((k\in Z)\)

奇偶性:由于\(f(0)\neq 0\),且\(f(0)\)没有取到最值,故函数没有奇偶性;

周期性\(T=\cfrac{2\pi}{2}=\pi\)

对称性:比如求对称轴方程,此时后边的\(+1\)不影响其对称性,前边的2倍也不影响,

故利用\(y=sin(2x+\cfrac{\pi}{6})\)求对称轴方程,

\(2x+\cfrac{\pi}{6}=k\pi+\cfrac{\pi}{2}(k\in Z)\),解得对称轴方程为:\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{6}(k\in Z)\)

求对称中心,先利用\(y=sin(2x+\cfrac{\pi}{6})\)求对称中心,最后补充\(+1\)

\(2x+\cfrac{\pi}{6}=k\pi(k\in Z)\),解得\(x=\cfrac{k\pi}{2}-\cfrac{\pi}{12}(k\in Z)\)

故对称中心坐标为\((\cfrac{k\pi}{2}-\cfrac{\pi}{12},1)(k\in Z)\)

零点:令\(y=2sin(2x+\cfrac{\pi}{6})+1=0\),即\(sin(2x+\cfrac{\pi}{6})=-\cfrac{1}{2}\)

\(2x+\cfrac{\pi}{6}=2k\pi-\cfrac{\pi}{6}(k\in Z)\)\(2x+\cfrac{\pi}{6}=2k\pi-\cfrac{5\pi}{6}(k\in Z)\)

\(x=k\pi-\cfrac{\pi}{6}(k\in Z)\)\(x=k\pi-\cfrac{\pi}{2}(k\in Z)\)

最值\(y_{min}=-1\)\(y_{max}=3\)

五点法作图

五点法作图1:自定周期的起止点;函数为\(f(x)=2sin(3x-\cfrac{\pi}{6})\)

\(x\) $$\cfrac{\pi}{18}$$ \(\cfrac{2\pi}{9}\) \(\cfrac{7\pi}{18}\) \(\cfrac{5\pi}{9}\) $$\cfrac{13\pi}{18}$$
\(3x-\cfrac{\pi}{6}\) \(0\) \(\cfrac{\pi}{2}\) \(\pi\) \(\cfrac{3\pi}{2}\) \(2\pi\)
\(sin(3x-\cfrac{\pi}{6})\) \(0\) \(1\) \(0\) \(-1\) \(0\)
\(f(x)\) \(0\) \(2\) \(0\) \(-2\) \(0\)
\(点的坐标\) \((\cfrac{\pi}{18},0)\) \((\cfrac{2\pi}{9},2)\) \((\cfrac{7\pi}{18},0)\) \((\cfrac{5\pi}{9},-2)\) \((\cfrac{13\pi}{18},0)\)

效果图如下:

五点法作图2:自定周期的起止点;函数为\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\)

\(x\) $$-\cfrac{\pi}{12}$$ \(\cfrac{2\pi}{12}\)\(=\)\(\cfrac{\pi}{6}\) \(\cfrac{5\pi}{12}\) \(\cfrac{8\pi}{12}\)\(=\)\(\cfrac{2\pi}{3}\) $$\cfrac{11\pi}{12}$$
\(2x+\cfrac{\pi}{6}\) \(0\) \(\cfrac{\pi}{2}\) \(\pi\) \(\cfrac{3\pi}{2}\) \(2\pi\)
\(sin(2x+\cfrac{\pi}{6})\) \(0\) \(1\) \(0\) \(-1\) \(0\)
\(f(x)\) \(1\) \(3\) \(1\) \(-1\) \(1\)
\(点的坐标\) \((-\cfrac{\pi}{12},1)\) \((\cfrac{\pi}{6},3)\) \((\cfrac{5\pi}{12},1)\) \((\cfrac{2\pi}{3},-1)\) \((\cfrac{11\pi}{12},1)\)

效果图如下:

【题定周期的起止点】求函数\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\)在区间\([0,\pi]\)上的函数图像;

分析:在上题作图的基础上修正如下即可,

\(x\) $$0$$ \(\cfrac{2\pi}{12}\)\(=\)\(\cfrac{\pi}{6}\) \(\cfrac{5\pi}{12}\) \(\cfrac{8\pi}{12}\)\(=\)\(\cfrac{2\pi}{3}\) $$\cfrac{11\pi}{12}$$ \(\pi\)
\(2x+\cfrac{\pi}{6}\) \(\cfrac{\pi}{6}\) \(\cfrac{\pi}{2}\) \(\pi\) \(\cfrac{3\pi}{2}\) \(2\pi\) \(\cfrac{13\pi}{6}\)
\(sin(2x+\cfrac{\pi}{6})\) \(\cfrac{1}{2}\) \(1\) \(0\) \(-1\) \(0\) \(\cfrac{1}{2}\)
\(f(x)\) \(2\) \(3\) \(1\) \(-1\) \(1\) \(2\)
\(坐标\) \((0,2)\) \((\cfrac{\pi}{6},3)\) \((\cfrac{5\pi}{12},1)\) \((\cfrac{2\pi}{3},-1)\) \((\cfrac{11\pi}{12},1)\) \((\pi,2)\)

效果图如下:待整理;

模板函数2

  • 核心的模板函数\(y=\cos x\),其性质如下:

定义域:\(x\in R\)

值 域:\(y=\cos x\in [-1,1]\)

单调性:单增区间 \([2k\pi-\pi,2k\pi](k\in Z)\); 单减区间 \([2k\pi,2k\pi+\pi](k\in Z)\)

奇偶性:奇函数;\(\cos(-x)=\cos x\)

周期性:\(T=2\pi\)

对称性:对称轴方程 \(x=k\pi(k\in Z)\);对称中心 \((k\pi+\cfrac{\pi}{2},0)(k\in Z)\)

零 点:\(x=k\pi+\cfrac{\pi}{2} (k\in Z)\)

最 值:\(x=2k\pi\)时,\(y_{max}=1\)\(x=2k\pi+\pi\)时,\(y_{min}=-1\)

五点法作图:

\(x\) \(0\) \(\cfrac{\pi}{2}\) \(\pi\) \(\cfrac{3\pi}{2}\) \(2\pi\)
\(f(x)=\cos x\) \(1\) \(0\) \(-1\) \(0\) \(1\)
\(点的坐标\) \((0,1)\) \((\cfrac{\pi}{2},0)\) \((\pi,-1)\) \((\cfrac{3\pi}{2},0)\) \((2\pi,1)\)

效果图如下:

以下内容,有时间再编辑;

使用示例

当研究清楚了上述的函数\(y=sinx\)的性质后,我们就能够以此为依托,研究更复杂的正弦型函数的各种性质了。

我们以\(y=2sin(2x+\cfrac{\pi}{6})+1\)为例子加以说明;

定义域\(x\in R\)

值域:由于\(-1\leqslant sin(2x+\cfrac{\pi}{6})\leqslant 1\)

\((-1)\times 2+1\leqslant 2sin(2x+\cfrac{\pi}{6})+1\leqslant 1\times 2+1\),即\(-1\leqslant y\leqslant 3\)

单调性:由于\(2\)倍和后边的\(+1\)不影响单调性,故利用\(y=sin(2x+\cfrac{\pi}{6})\)求单调区间;

\(2k\pi-\cfrac{\pi}{2}\leqslant 2x+\cfrac{\pi}{6}\leqslant 2k\pi+\cfrac{\pi}{2}\)\(k\in Z\)

解得单调递增区间为\([k\pi-\cfrac{\pi}{3},k\pi+\cfrac{\pi}{6}]\)\((k\in Z)\)

\(2k\pi+\cfrac{\pi}{2}\leqslant 2x+\cfrac{\pi}{6}\leqslant 2k\pi+\cfrac{3\pi}{2}\)\(k\in Z\)

解得单调递减区间为\([k\pi+\cfrac{\pi}{6},k\pi+\cfrac{2\pi}{3}]\)\((k\in Z)\)

奇偶性:由于\(f(0)\neq 0\),且\(f(0)\)没有取到最值,故函数没有奇偶性;

周期性\(T=\cfrac{2\pi}{2}=\pi\)

对称性:比如求对称轴方程,此时后边的\(+1\)不影响其对称性,前边的2倍也不影响,

故利用\(y=sin(2x+\cfrac{\pi}{6})\)求对称轴方程,

\(2x+\cfrac{\pi}{6}=k\pi+\cfrac{\pi}{2}(k\in Z)\),解得对称轴方程为:\(x=\cfrac{k\pi}{2}+\cfrac{\pi}{6}(k\in Z)\)

求对称中心,先利用\(y=sin(2x+\cfrac{\pi}{6})\)求对称中心,最后补充\(+1\)

\(2x+\cfrac{\pi}{6}=k\pi(k\in Z)\),解得\(x=\cfrac{k\pi}{2}-\cfrac{\pi}{12}(k\in Z)\)

故对称中心坐标为\((\cfrac{k\pi}{2}-\cfrac{\pi}{12},1)(k\in Z)\)

零点:令\(y=2sin(2x+\cfrac{\pi}{6})+1=0\),即\(sin(2x+\cfrac{\pi}{6})=-\cfrac{1}{2}\)

\(2x+\cfrac{\pi}{6}=2k\pi-\cfrac{\pi}{6}(k\in Z)\)\(2x+\cfrac{\pi}{6}=2k\pi-\cfrac{5\pi}{6}(k\in Z)\)

\(x=k\pi-\cfrac{\pi}{6}(k\in Z)\)\(x=k\pi-\cfrac{\pi}{2}(k\in Z)\)

最值\(y_{min}=-1\)\(y_{max}=3\)

五点法作图

五点法作图:自定周期的起止点;函数为\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\)

\(x\) $$-\cfrac{\pi}{12}$$ \(\cfrac{2\pi}{12}\)\(=\)\(\cfrac{\pi}{6}\) \(\cfrac{5\pi}{12}\) \(\cfrac{8\pi}{12}\)\(=\)\(\cfrac{2\pi}{3}\) $$\cfrac{11\pi}{12}$$
\(2x+\cfrac{\pi}{6}\) \(0\) \(\cfrac{\pi}{2}\) \(\pi\) \(\cfrac{3\pi}{2}\) \(2\pi\)
\(sin(2x+\cfrac{\pi}{6})\) \(0\) \(1\) \(0\) \(-1\) \(0\)
\(f(x)\) \(1\) \(3\) \(1\) \(-1\) \(1\)
\(点的坐标\) \((-\cfrac{\pi}{12},1)\) \((\cfrac{\pi}{6},3)\) \((\cfrac{5\pi}{12},1)\) \((\cfrac{2\pi}{3},-1)\) \((\cfrac{11\pi}{12},1)\)

效果图如下:

【题定周期的起止点】求函数\(f(x)=2sin(2x+\cfrac{\pi}{6})+1\)在区间\([0,\pi]\)上的函数图像;

分析:在上题作图的基础上修正如下即可,

\(x\) $$0$$ \(\cfrac{2\pi}{12}\)\(=\)\(\cfrac{\pi}{6}\) \(\cfrac{5\pi}{12}\) \(\cfrac{8\pi}{12}\)\(=\)\(\cfrac{2\pi}{3}\) $$\cfrac{11\pi}{12}$$ \(\pi\)
\(2x+\cfrac{\pi}{6}\) \(\cfrac{\pi}{6}\) \(\cfrac{\pi}{2}\) \(\pi\) \(\cfrac{3\pi}{2}\) \(2\pi\) \(\cfrac{13\pi}{6}\)
\(sin(2x+\cfrac{\pi}{6})\) \(\cfrac{1}{2}\) \(1\) \(0\) \(-1\) \(0\) \(\cfrac{1}{2}\)
\(f(x)\) \(2\) \(3\) \(1\) \(-1\) \(1\) \(2\)
\(坐标\) \((0,2)\) \((\cfrac{\pi}{6},3)\) \((\cfrac{5\pi}{12},1)\) \((\cfrac{2\pi}{3},-1)\) \((\cfrac{11\pi}{12},1)\) \((\pi,2)\)

效果图如下:待整理;

posted @ 2019-04-05 18:51  静雅斋数学  阅读(301)  评论(0编辑  收藏  举报
您已经努力一段时间了
活动活动喝杯咖啡吧
                  ----静雅斋