RDD转为Dataset如何指定schema?

与RDD进行互操作

Spark SQL支持两种不同方法将现有RDD转换为Datasets。第一种方法使用反射来推断包含特定类型对象的RDD的schema。这种基于反射的方法会导致更简洁的代码,并且在编写Spark应用程序时已经知道schema的情况下工作良好。

第二种创建Datasets的方法是通过编程接口,允许您构建schema,然后将其应用于现有的RDD。虽然此方法更详细,但它允许你在直到运行时才知道列及其类型的情况下去构件数据集。

使用反射推断模式

Spark SQL的Scala接口支持自动将包含case classes的RDD转换为DataFrame。Case class定义表的schema。使用反射读取case class的参数名称,并将其变为列的名称。Case class也可以嵌套或包含复杂类型,如Seqs或Arrays。此RDD可以隐式转换为DataFrame,然后将其注册为表格。表可以在随后的SQL语句中使用。

// For implicit conversions from RDDs to DataFrames

import spark.implicits._

 

// Create an RDD of Person objects from a text file, convert it to a Dataframe

val peopleDF = spark.sparkContext

?.textFile("examples/src/main/resources/people.txt")

?.map(_.split(","))

?.map(attributes => Person(attributes(0), attributes(1).trim.toInt))

?.toDF()

// Register the DataFrame as a temporary view

peopleDF.createOrReplaceTempView("people")

 

// SQL statements can be run by using the sql methods provided by Spark

val teenagersDF = spark.sql("SELECT name, age FROM people WHERE age BETWEEN 13 AND 19")

 

// The columns of a row in the result can be accessed by field index

teenagersDF.map(teenager => "Name: " + teenager(0)).show()

// +------------+

// | ? ? ? value|

// +------------+

// |Name: Justin|

// +------------+

 

// or by field name

teenagersDF.map(teenager => "Name: " + teenager.getAs[String]("name")).show()

// +------------+

// | ? ? ? value|

// +------------+

// |Name: Justin|

// +------------+

 

// No pre-defined encoders for Dataset[Map[K,V]], define explicitly

implicit val mapEncoder = org.apache.spark.sql.Encoders.kryo[Map[String, Any]]

// Primitive types and case classes can be also defined as

// implicit val stringIntMapEncoder: Encoder[Map[String, Any]]=ExpressionEncoder()

 

// row.getValuesMap[T] retrieves multiple columns at once into a Map[String, T]

teenagersDF.map(teenager => teenager.getValuesMap[Any](List("name", "age"))).collect()

// Array(Map("name" -> "Justin", "age" -> 19))

以编程方式指定模式

当case class不能提前定义时(例如,记录的结构用字符串编码,赵雯或者文本数据集将被解析并且字段对不同的用户值会不同),DataFrame可以以编程方式通过三个步骤创建 。

 

2,使用StructType创建一组schema,然后让其匹配步骤1中Rows的类型结构。

3,使用SparkSession 提供的方法createDataFrame,将schema应用于Rows 类型的RDD。

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

推荐阅读:

1,从零开始 Spark 性能调优

2,用java提交一个Spark应用程序

3,SparkStreaming如何解决小文件问题

4,SparkStreaming源码阅读思路

环境进入spark技术学院,与业界大牛交流互动。

640?wx_fmt=jpeg


文章来源:https://blog.csdn.net/rlnLo2pNEfx9c/article/details/80731301

posted @ 2018-09-11 13:53  王凤霞  阅读(597)  评论(0编辑  收藏  举报
友情链接:回力 | 中老年高档女装 | 武汉雅思 | 武汉托福 | 武汉sat培训