SPOJ - DISUBSTR Distinct Substrings (不相同的子串的个数)
Distinct Substrings
Time Limit: 159MS | Memory Limit: 1572864KB | 64bit IO Format: %lld & %llu |
Description
Given a string, we need to find the total number of its distinct substrings.
Input
T- number of test cases. T<=20;
Each test case consists of one string, whose length is <= 1000
Output
For each test case output one number saying the number of distinct substrings.
Example
Sample Input:
2
CCCCC
ABABA
Sample Output:
5
9
Explanation for the testcase with string ABABA:
len=1 : A,B
len=2 : AB,BA
len=3 : ABA,BAB
len=4 : ABAB,BABA
len=5 : ABABA
Thus, total number of distinct substrings is 9.
/* * SPOJ - DISUBSTR Distinct Substrings * 求不同子串的个数 * * 长度为n的字符串有n*(n+1)/2个子串,再减去相同的子串就行了 * 对于子串,它肯定是一个后缀的前缀,如果height[i]==k,说明后缀i-1和后缀i有k个子串相同, * 这样减去它即可,即减去height数组的后n-1个即可 */ #include <bits/stdc++.h> using namespace std; const int MAXN = 1000+100; int sa[MAXN]; int t1[MAXN],t2[MAXN],c[MAXN]; int Rank[MAXN],height[MAXN]; void build_sa(int s[],int n,int m) { int i,j,p,*x=t1,*y=t2; for(i=0;i<m;i++)c[i]=0; for(i=0;i<n;i++)c[x[i]=s[i]]++; for(i=1;i<m;i++)c[i]+=c[i-1]; for(i=n-1;i>=0;i--)sa[--c[x[i]]]=i; for(j=1;j<=n;j<<=1) { p=0; for(i=n-j;i<n;i++)y[p++]=i; for(i=0;i<n;i++)if(sa[i]>=j)y[p++]=sa[i]-j; for(i=0;i<m;i++)c[i]=0; for(i=0;i<n;i++)c[x[y[i]]]++; for(i=1;i<m;i++)c[i]+=c[i-1]; for(i=n-1;i>=0;i--)sa[--c[x[y[i]]]]=y[i]; swap(x,y); p=1;x[sa[0]]=0; for(i=1;i<n;i++) x[sa[i]]=y[sa[i-1]]==y[sa[i]] && y[sa[i-1]+j]==y[sa[i]+j]?p-1:p++; if(p>=n)break; m=p; } } void getHeight(int s[],int n) { int i,j,k=0; for(i=0;i<=n;i++) Rank[sa[i]]=i; for(i=0;i<n;i++) { if(k)k--; j=sa[Rank[i]-1]; while(s[i+k]==s[j+k])k++; height[Rank[i]]=k; } } char str[MAXN]; int ss[MAXN]; int main() { int T; scanf("%d",&T); while(T--) { scanf("%s",str); int len=strlen(str); for(int i=0;i<len;i++) ss[i]=str[i]; ss[len]=0; build_sa(ss,len+1,128); getHeight(ss,len); int ans=len*(len+1)/2; for(int i=2;i<=len;i++) ans-=height[i]; printf("%d\n",ans); } return 0; }