epoll的原理和流程
一、epoll的原理和流程
本节会以示例和图表来讲解epoll的原理和流程。
1、创建epoll对象
如下图所示,当某个进程调用epoll_create方法时,内核会创建一个eventpoll对象(也就是程序中epfd所代表的对象)。eventpoll对象也是文件系统中的一员,和socket一样,它也会有等待队列。
内核创建eventpoll对象
创建一个代表该epoll的eventpoll对象是必须的,因为内核要维护“就绪列表”等数据,“就绪列表”可以作为eventpoll的成员。
2、维护监视列表
创建epoll对象后,可以用epoll_ctl添加或删除所要监听的socket。以添加socket为例,如下图,如果通过epoll_ctl添加sock1、sock2和sock3的监视,内核会将eventpoll添加到这三个socket的等待队列中。
添加所要监听的socket
当socket收到数据后,中断程序会操作eventpoll对象,而不是直接操作进程。
3、接收数据
当socket收到数据后,中断程序会给eventpoll的“就绪列表”添加socket引用。如下图展示的是sock2和sock3收到数据后,中断程序让rdlist引用这两个socket。
给就绪列表添加引用
eventpoll对象相当于是socket和进程之间的中介,socket的数据接收并不直接影响进程,而是通过改变eventpoll的就绪列表来改变进程状态。
当程序执行到epoll_wait时,如果rdlist已经引用了socket,那么epoll_wait直接返回,如果rdlist为空,阻塞进程。
4、阻塞和唤醒进程
假设计算机中正在运行进程A和进程B,在某时刻进程A运行到了epoll_wait语句。如下图所示,内核会将进程A放入eventpoll的等待队列中,阻塞进程。
epoll_wait阻塞进程
当socket接收到数据,中断程序一方面修改rdlist,另一方面唤醒eventpoll等待队列中的进程,进程A再次进入运行状态(如下图)。也因为rdlist的存在,进程A可以知道哪些socket发生了变化。
epoll唤醒进程
二、epoll的实现细节
至此,相信读者对epoll的本质已经有一定的了解。但我们还留有一个问题,eventpoll的数据结构是什么样子?
再留两个问题,就绪队列应该应使用什么数据结构?eventpoll应使用什么数据结构来管理通过epoll_ctl添加或删除的socket?
(——我是分割线,想好了才能往下看哦~)
如下图所示,eventpoll包含了lock、mtx、wq(等待队列)、rdlist等成员。rdlist和rbr是我们所关心的。
epoll原理示意图
图片来源:《深入理解Nginx:模块开发与架构解析(第二版)》,陶辉
就绪列表的数据结构
就绪列表引用着就绪的socket,所以它应能够快速的插入数据。
程序可能随时调用epoll_ctl添加监视socket,也可能随时删除。当删除时,若该socket已经存放在就绪列表中,它也应该被移除。
所以就绪列表应是一种能够快速插入和删除的数据结构。双向链表就是这样一种数据结构,epoll使用双向链表来实现就绪队列(对应上图的rdllist)。
索引结构
既然epoll将“维护监视队列”和“进程阻塞”分离,也意味着需要有个数据结构来保存监视的socket。至少要方便的添加和移除,还要便于搜索,以避免重复添加。红黑树是一种自平衡二叉查找树,搜索、插入和删除时间复杂度都是O(log(N)),效率较好。epoll使用了红黑树作为索引结构(对应上图的rbr)。
ps:因为操作系统要兼顾多种功能,以及由更多需要保存的数据,rdlist并非直接引用socket,而是通过epitem间接引用,红黑树的节点也是epitem对象。同样,文件系统也并非直接引用着socket。为方便理解,本文中省略了一些间接结构。
三、结论
epoll在select和poll(poll和select基本一样,有少量改进)的基础引入了eventpoll作为中间层,使用了先进的数据结构,是一种高效的多路复用技术。