摘要:
LASSO(Least Absolute Shrinkage and Selection Operator)回归模型一般都是用英文缩写表示,硬要翻译的话,可翻译为 最小绝对收缩和选择算子。 它是一种线性回归模型的扩展,其主要目标是解决高维数据中的特征选择和正则化问题。 1. 概述 在LASSO中,通 阅读全文
摘要:
岭回归(Ridge Regression)是一种用于处理共线性数据的线性回归改进方法。和上一篇用基于最小二乘法的线性回归相比,它通过放弃最小二乘的无偏性,以损失部分信息、降低精度为代价来获得更实际和可靠性更强的回归系数。 1. 概述 岭回归的模型对于存在大量相关特征(这些特征之间存在很高的相关性)的 阅读全文
摘要:
线性回归是一种用于连续型分布预测的机器学习算法。其基本思想是通过拟合一个线性函数来最小化样本数据和预测函数之间的误差。 1. 概述 常见的线性回归模型就是:\(f(x) = w_0+w_1x_1+w_2x_2+...+w_nx_n\)这样的一个函数。其中 \((w_1,w_2,...w_n)\)是模 阅读全文
摘要:
数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加 阅读全文
摘要:
数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加 阅读全文
摘要:
数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加 阅读全文
摘要:
数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加 阅读全文
摘要:
数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加 阅读全文
摘要:
数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加 阅读全文
摘要:
命令行的历史可以追溯到Unix操作系统的起源,也就是1969年,Unix诞生之时,前辈们就已经用命令行来和操作系统交互了。 随着计算机性能的飞速发展,图形化的操作界面逐渐成为主流,命令行工具离普通用户越来越远。这些年来,图形界面的发展不仅仅表现在界面越来越美观,其操作方式也越来越丰富,不只是早期的鼠 阅读全文