【scikit-learn基础】--『回归模型评估』之损失分析

分类模型评估中,通过各类损失(loss)函数的分析,可以衡量模型预测结果与真实值之间的差异。
不同的损失函数可用于不同类型的分类问题,以便更好地评估模型的性能。

本篇将介绍分类模型评估中常用的几种损失计算方法。

1. 汉明损失

Hamming loss汉明损失)是一种衡量分类模型预测错误率的指标。
它直接衡量了模型预测错误的样本比例,因此更直观地反映出模型的预测精度,
而且,它对不平衡数据比较敏感,也适用于多分类的问题,不仅限于二分类问题。

1.1. 计算公式

L(y,y^)=1nmi=0n1j=0m11(y^i,jyi,j)
其中,n是样本数量,m是标签数量,yi,j是样本i的第j个标签的真实值,y^i,j是对应的预测值,
1(x) 是指示函数。

1.2. 使用示例

from sklearn.metrics import hamming_loss
import numpy as np

n = 100
y_true = np.random.randint(1, 10, n)
y_pred = np.random.randint(1, 10, n)

s = hamming_loss(y_true, y_pred)
print("hamming loss:{}".format(s))

# 运行结果
hamming loss:0.8

2. 铰链损失

Hinge loss铰链损失)常用于“最大间隔”分类,其最著名的应用是作为支持向量机(SVM)的目标函数。
Hinge loss主要用于二分类问题,并且通常与特定的算法(如SVM)结合使用。

2.1. 计算公式

L(y,w)=1ni=0n1max{1wiyi,0}
其中,n是样本数量,yi是真实值, wi是相应的预测决策(由 decision_function 方法输出)。

2.2. 使用示例

from sklearn.metrics import hinge_loss
from sklearn.svm import LinearSVC
from sklearn.model_selection import train_test_split
import numpy as np

n = 100
X = np.random.randint(0, 2, size=(n, 1))
y = np.random.randint(0, 2, n)

X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.1)

reg = LinearSVC(dual="auto")
reg.fit(X_train, y_train)

y_pred_decision = reg.decision_function(X_test)

s = hinge_loss(y_test, y_pred_decision)
print("hinge loss:{}".format(s))

# 运行结果
hinge loss:1.0136184446302712

上面的示例中,首先构建一个支持向量机的训练模型和随机的样本数据。
最后在测试集上计算hinge loss

3. 对数损失

对数损失log loss)通过考虑模型预测的概率与实际标签的对数误差来评估模型的性能。
它特别关注模型对于每个样本的预测概率的准确性,对于错误的分类,Log loss会给予较大的惩罚。

对数损失的值越小,表示模型的预测概率越接近实际标签,模型的性能越好。

3.1. 计算公式

LL=1Ni=0N1k=0K1yi,klogpi,k
其中,N是样本数量,K是分类标签的数量,
yi,k是第i个样本在标签k上的真实值,pi,k是对应的概率估计。

3.2. 使用示例

from sklearn.metrics import log_loss
import numpy as np

n = 100
k = 10
y_true = np.random.randint(0, k, n)
y_prob = np.random.rand(n, k)

# 这一步转换后,
# y_prob 每一行的和都为1
for i in range(len(y_prob)):
    y_prob[i, :] = y_prob[i, :] / np.sum(y_prob[i, :])


s = log_loss(y_true, y_prob)
print("log loss:{}".format(s))

# 运行结果
log loss:2.6982702715125466

上面的示例中,n是样本数量,k是标签数量。

4. 零一损失

零一损失zero-one loss)非常直观,直接对应着分类判断错误的个数,能很清晰地反映出模型预测错误的比例。
它计算简单,易于理解和实现,对于二分类问题特别直观,但是对于非凸性质不太适用。

4.1. 计算公式

L(y,y^)=1ni=0n11(y^iyi)
其中,n是样本数量,yi是真实值,yi^是预测值,
1(x) 是指示函数。

4.2. 使用示例

from sklearn.metrics import zero_one_loss
import numpy as np

n = 100
y_true = np.random.randint(1, 10, n)
y_pred = np.random.randint(1, 10, n)

s1 = zero_one_loss(y_true, y_pred)
s2 = zero_one_loss(y_true, y_pred, normalize=False)
print("zero-one loss比率:{}\nzero-one loss数量:{}".format(s1, s2))

# 运行结果
zero-one loss比率:0.89
zero-one loss数量:89

5. Brier 分数损失

Brier 分数损失Brier score loss)关注模型预测的概率与实际结果之间的差异。
与只关注预测类别的其他指标不同,它衡量了预测概率的可靠性;
与一些仅适用于二分类问题的评估指标相比,Brier score loss可以应用于多类别分类问题。

它的数值越小,表示模型的概率预测越准确,具有很好的解释性。

5.1. 计算公式

BS=1ni=0n1(yipi)2
其中,n是样本数量,yi是真实值,pi是预测概率估计的均方误差。

5.2. 使用示例

from sklearn.metrics import brier_score_loss
import numpy as np

n = 100
y_true = np.random.randint(0, 2, n)
y_prob = np.random.rand(n)

s = brier_score_loss(y_true, y_prob)
print("brier score loss:{}".format(s))

# 运行结果
brier score loss:0.3141953858083935

示例中计算损失用的模拟数据中,y_true表示真实值,y_prob表示预测概率的均方误差。

6. 总结

本篇归纳总结了分类模型中关于损失函数的一些使用方式:

  • 汉明损失,Hamming loss
  • 铰链损失,Hinge loss
  • 对数损失,log loss
  • 零一损失,zero one loss
  • Brier 分数损失,Brier score loss
posted @   wang_yb  阅读(529)  评论(0编辑  收藏  举报
相关博文:
阅读排行:
· 一个费力不讨好的项目,让我损失了近一半的绩效!
· 实操Deepseek接入个人知识库
· CSnakes vs Python.NET:高效嵌入与灵活互通的跨语言方案对比
· 【.NET】调用本地 Deepseek 模型
· Plotly.NET 一个为 .NET 打造的强大开源交互式图表库
历史上的今天:
2022-01-30 pandas 基于日期的统计
2015-01-30 PXE 自动安装物理机 (DHCP服务由路由提供, 不能再配置)
点击右上角即可分享
微信分享提示