【scikit-learn基础】--『监督学习』之 均值聚类

聚类算法属于无监督学习,其中最常见的是均值聚类scikit-learn中,有两种常用的均值聚类算法:
一种是有名的K-means(也就是K-均值)聚类算法,这个算法几乎是学习聚类必会提到的算法;
另一个是均值偏移聚类,它与K-means各有千秋,只是针对的应用场景不太一样,但是知名度远不如K-Means

本篇介绍如何在scikit-learn中使用这两种算法。

1. 算法概述

1.1. K-Means

K-means算法起源于1967年,由James MacQueen和J. B. Hartigan提出。
它的基本原理是是将n个点划分为K个集群,使得每个点都属于离其最近的均值(中心点)对应的集群。

K-Means算法主要包含2个部分:

  1. 距离公式:通常采用欧几里得距离来计算数据点与质心之间的距离

\(d(X_i, C_j) = ||X_i - C_j||^2\) 其中,\(X_i\)是数据点,\(C_j\)是质心。

  1. 目标函数:目标是最小化所有数据点与所属簇的质心之间的距离平方和

\(J = \sum_{j=1}^k \sum_{i=1}^{N_j} ||X_i - C_j||^2\) 其中,\(N_j\)表示第\(j\)个簇中的样本数量。

1.2. 均值漂移

均值漂移算法最早是由Fukunaga等人在1975年提出的。
它的基本原理是对每一个数据点,算法都会估算其周围点的密度梯度,然后沿着密度上升的方向移动该点,直至达到密度峰值。

均值漂移算法主要有3个步骤:

  1. 核函数估计数据点的密度:常用的核函数比如高斯核,

\(K(x) = \exp(-||x||^2 / (2h^2))\) 其中,\(h\)为带宽参数,控制核的宽度。

  1. 均值漂移向量:也就是对于每个数据点,计算其周围点的密度梯度
  2. 迭代更新:根据均值漂移向量,每个数据点会沿着密度上升的方向移动,更新自己的位置

2. 创建样本数据

利用scikit-learn中的样本生成器,创建一些用于聚类的数据。

import matplotlib.pyplot as plt
from sklearn.datasets import make_blobs

X, y = make_blobs(n_samples=1000, centers=5)
plt.scatter(X[:, 0], X[:, 1], marker="o", c=y, s=25)

plt.show()

image.png
生成了包含5个类别的1000条样本数据。

3. 模型训练

首先,划分训练集和测试集。

from sklearn.model_selection import train_test_split

# 分割训练集和测试集
X_train, X_test, y_train, y_test = train_test_split(X, y, test_size=0.2)

按照8:2的比例划分了训练集测试集

3.1. K-Means

对于K-Means算法来说,需要指定聚类的数目,通过观察数据,我们指定聚类的数目5
这里的样本数据比较简单,能够一下看出来,实际情况下并不会如此容易的知道道聚类的数目是多少,
常常需要多次的尝试,才能得到一个比较好的聚类数目,也就是K的值。

基于上面的数据,我们设置5个簇,看看聚类之后的质心在训练集和测试集上的表现。

from sklearn.cluster import KMeans

# 定义
reg = KMeans(n_clusters=5, n_init="auto")

# 训练模型
reg.fit(X_train, y_train)

# 绘制质心
_, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
markers = ["x", "o", "^", "s", "*"]
centers = reg.cluster_centers_

axes[0].scatter(X_train[:, 0], X_train[:, 1], marker="o", c=y_train, s=25)
axes[0].set_title("【训练集】的质心位置")

axes[1].scatter(X_test[:, 0], X_test[:, 1], marker="o", c=y_test, s=25)
axes[1].set_title("【测试集】的质心位置")

for idx, c in enumerate(centers):
    axes[0].plot(c[0], c[1], markers[idx], markersize=10)
    axes[1].plot(c[0], c[1], markers[idx], markersize=10)

plt.show()

image.png

3.2. 均值漂移

均值漂移聚类,事先是不用指定聚类的数目的,通过调整它的bandwidth参数,
可以训练出拥有不同数目质心的模型。

下面,设置了bandwidth=5,训练之后得到了拥有3个质心的模型。

from sklearn.cluster import MeanShift

# 定义
reg = MeanShift(cluster_all=False, bandwidth=5)

# 训练模型
reg.fit(X, y)

# 绘制质心
_, axes = plt.subplots(nrows=1, ncols=2, figsize=(10, 4))
markers = ["x", "o", "^", "s", "*"]
centers = reg.cluster_centers_
print(len(centers))

axes[0].scatter(X_train[:, 0], X_train[:, 1], marker="o", c=y_train, s=25)
axes[0].set_title("【训练集】的质心位置")

axes[1].scatter(X_test[:, 0], X_test[:, 1], marker="o", c=y_test, s=25)
axes[1].set_title("【测试集】的质心位置")

for idx, c in enumerate(centers):
    axes[0].plot(c[0], c[1], markers[idx], markersize=10)
    axes[1].plot(c[0], c[1], markers[idx], markersize=10)

plt.show()

image.png
它把左下角的3类比较接近的样本数据点算作一类。
通过调整 bandwidth参数,也可以得到和 K-Means 一样的结果,
有兴趣的话可以试试,大概设置 bandwidth=2 左右的时候,可以得到5个质心,与上面的K-Means算法的结果类似。

4. 总结

K-Means均值漂移聚类都是强大的聚类工具,各有其优缺点。

K-Means 的优势是简单、快速且易于实现,当数据集是密集的,且类别之间有明显的分离时,效果非常好;
不过,它需要预先设定簇的数量k,且对初始质心的选择敏感,所以,对于不是凸形状或者大小差别很大的簇,效果并不好。

均值漂移聚类的优势在于不需要预先知道簇的数量,可以自适应地找到数据的“模式”,对噪声和异常值也有很好的鲁棒性。
不过,与K-Means相比,它需要选择合适的带宽参数,对高维数据可能不太有效,且计算复杂度较高。

最后,对于这两种均值聚类算法来说,选择哪种取决于数据的性质和应用的需求。

posted @ 2024-01-14 09:53  wang_yb  阅读(264)  评论(3编辑  收藏  举报