合集-scikit-learn
摘要:Scikit-learn是一个基于Python的开源机器学习库,它提供了大量的机器学习算法和工具,方便用户进行数据挖掘、分析和预测。 Scikit-learn是基于另外两个知名的库 Scipy 和 Numpy的,关于 Scipy 和 Numpy 等库,之前的系列文章中有介绍: Scipy 基础系列
阅读全文
摘要:机器学习的第一步是准备数据,好的数据能帮助我们加深对机器学习算法的理解。 不管是在学习还是实际工作中,准备数据永远是一个枯燥乏味的步骤。scikit-learn库显然看到了这个痛点,才在它的数据加载子模块中为我们准备了直接可用的数据集。 在它的数据加载子模块中,提供了6种直接可用来学习算法的经典数据
阅读全文
摘要:上一篇介绍了scikit-learn中的几个玩具数据集,本篇介绍scikit-learn提供的一些真实的数据集。玩具数据集:scikit-learn 基础(01)--『数据加载』之玩具数据集 1. 获取数据集 与玩具数据集不同,真实的数据集的数据不仅数据特征多,而且数据量也比较大,所以没有直接包含在
阅读全文
摘要:除了内置的数据集,scikit-learn还提供了随机样本的生成器。通过这些生成器函数,可以生成具有特定特性和分布的随机数据集,以帮助进行机器学习算法的研究、测试和比较。 目前,scikit-learn库(v1.3.0版)中有20个不同的生成样本的函数。本篇重点介绍其中几个具有代表性的函数。 1.
阅读全文
摘要:这是scikit-learn数据加载系列的最后一篇,本篇介绍如何加载外部的数据集。 外部数据集不像之前介绍的几种类型的数据集那样,针对每种数据提供对应的接口,每个接口加载的数据都是固定的。而外部数据集加载之后,数据的字段和类型是不确定的。 简单来说,我们在实际的数据分析工作中,用到的是外部数据集加载
阅读全文
摘要:数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加
阅读全文
摘要:数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加
阅读全文
摘要:数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加
阅读全文
摘要:数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加
阅读全文
摘要:数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加
阅读全文
摘要:数据的预处理是数据分析,或者机器学习训练前的重要步骤。通过数据预处理,可以 提高数据质量,处理数据的缺失值、异常值和重复值等问题,增加数据的准确性和可靠性 整合不同数据,数据的来源和结构可能多种多样,分析和训练前要整合成一个数据集 提高数据性能,对数据的值进行变换,规约等(比如无量纲化),让算法更加
阅读全文
摘要:岭回归(Ridge Regression)是一种用于处理共线性数据的线性回归改进方法。和上一篇用基于最小二乘法的线性回归相比,它通过放弃最小二乘的无偏性,以损失部分信息、降低精度为代价来获得更实际和可靠性更强的回归系数。 1. 概述 岭回归的模型对于存在大量相关特征(这些特征之间存在很高的相关性)的
阅读全文
摘要:LASSO(Least Absolute Shrinkage and Selection Operator)回归模型一般都是用英文缩写表示,硬要翻译的话,可翻译为 最小绝对收缩和选择算子。 它是一种线性回归模型的扩展,其主要目标是解决高维数据中的特征选择和正则化问题。 1. 概述 在LASSO中,通
阅读全文
摘要:在机器学习中,支持向量机(Support Vector Machine)算法既可以用于回归问题,也可以用于分类问题。 支持向量机(SVM)算法的历史可以追溯到1963年,当时前苏联统计学家弗拉基米尔·瓦普尼克(Vladimir N. Vapnik)和他的同事阿列克谢·切尔沃宁基斯(Alexey Ya
阅读全文
摘要:决策树算法是一种既可以用于分类,也可以用于回归的算法。 决策树回归是通过对输入特征的不断划分来建立一棵决策树,每一步划分都基于当前数据集的最优划分特征。它的目标是最小化总体误差或最大化预测精度,其构建通常采用自上而下的贪心搜索方式,通过比较不同划分标准来选择最优划分。 决策树回归广泛应用于各种回归问
阅读全文
摘要:随机森林回归(Random Forest Regression)是一种在机器学习领域广泛应用的算法,由美国科学家 Leo Breiman 在2001年提出。它是一种集成学习方法,通过整合多个决策树的预测结果来提高预测精度和稳定性。 随机森林回归适用于各种需要预测连续数值输出的问题,如金融领域的股票价
阅读全文
摘要:KNN(K-近邻),全称K-Nearest Neighbors,是一种常用的分类算法。KNN算法的历史可以追溯到1957年,当时Cover和Hart提出了“最近邻分类”的概念。但是,这个算法真正得到广泛认知和应用是在1992年,由Altman发表的一篇名为“K-Nearest Neighbors”的
阅读全文
摘要:逻辑回归这个算法的名称有一定的误导性。虽然它的名称中有“回归”,当它在机器学习中不是回归算法,而是分类算法。因为采用了与回归类似的思想来解决分类问题,所以它的名称才会是逻辑回归。 逻辑回归的思想可以追溯到19世纪,由英国统计学家Francis Galton在研究豌豆遗传问题时首次提出。然而,真正将逻
阅读全文
摘要:贝叶斯分类是一种统计学分类方法,基于贝叶斯定理,对给定的数据集进行分类。它的历史可以追溯到18世纪,当时英国统计学家托马斯·贝叶斯发展了贝叶斯定理,这个定理为统计决策提供了理论基础。 不过,贝叶斯分类在实际应用中的广泛使用是在20世纪80年代,当时计算机技术的进步使得大规模数据处理成为可能。 1.
阅读全文