1708 Fibonacci String
Problem Description
After little Jim learned Fibonacci Number in the class , he was very interest in it.
Now he is thinking about a new thing -- Fibonacci String .
He defines : str[n] = str[n-1] + str[n-2] ( n > 1 )
He is so crazying that if someone gives him two strings str[0] and str[1], he will calculate the str[2],str[3],str[4] , str[5]....
For example :
If str[0] = "ab"; str[1] = "bc";
he will get the result , str[2]="abbc", str[3]="bcabbc" , str[4]="abbcbcabbc" …………;
As the string is too long ,Jim can't write down all the strings in paper. So he just want to know how many times each letter appears in Kth Fibonacci String . Can you help him ?
Now he is thinking about a new thing -- Fibonacci String .
He defines : str[n] = str[n-1] + str[n-2] ( n > 1 )
He is so crazying that if someone gives him two strings str[0] and str[1], he will calculate the str[2],str[3],str[4] , str[5]....
For example :
If str[0] = "ab"; str[1] = "bc";
he will get the result , str[2]="abbc", str[3]="bcabbc" , str[4]="abbcbcabbc" …………;
As the string is too long ,Jim can't write down all the strings in paper. So he just want to know how many times each letter appears in Kth Fibonacci String . Can you help him ?
Input
The first line contains a integer N which indicates the number of test cases.
Then N cases follow.
In each case,there are two strings str[0], str[1] and a integer K (0 <= K < 50) which are separated by a blank.
The string in the input will only contains less than 30 low-case letters.
Then N cases follow.
In each case,there are two strings str[0], str[1] and a integer K (0 <= K < 50) which are separated by a blank.
The string in the input will only contains less than 30 low-case letters.
Output
For each case,you should count how many times each letter appears in the Kth Fibonacci String and print out them in the format "X:N".
If you still have some questions, look the sample output carefully.
Please output a blank line after each test case.
To make the problem easier, you can assume the result will in the range of int.
If you still have some questions, look the sample output carefully.
Please output a blank line after each test case.
To make the problem easier, you can assume the result will in the range of int.
Sample Input
1
ab bc 3
Sample Output
a:1
b:3
c:2
d:0
e:0
f:0
g:0
h:0
i:0
j:0
k:0
l:0
m:0
n:0
o:0
p:0
q:0
r:0
s:0
t:0
u:0
v:0
w:0
x:0
y:0
z:0
1 #include <iostream> 2 #include <algorithm> 3 #include <stdio.h> 4 #include <string.h> 5 #include <math.h> 6 using namespace std; 7 long long f(int n)//斐波那契数列函数 8 { 9 long long i,a[100]; 10 a[0]=0;a[1]=1; 11 for(i=2;i<=n;i++) 12 a[i]=a[i-1]+a[i-2]; 13 return a[n]; 14 } 15 int main() 16 { 17 char str1[100],str2[100],ch; 18 long long n,m,i,j,k,sum,len1,len2; 19 while(~scanf("%lld",&m)) 20 { 21 while(n--) 22 { 23 scanf("%s%s%lld",str1,str2,&m); 24 len1=strlen(str1); 25 len2=strlen(str2); 26 if(m==0)//一个特例 27 { 28 for(i=0;i<26;i++) 29 { 30 sum=0;ch='a'+i; 31 for(j=0;j<len1;j++) 32 { 33 if(ch==str1[j]) 34 sum=sum+1; 35 } 36 printf("%c:%lld\n",ch,sum); 37 } 38 } 39 else 40 { 41 for(i=0;i<26;i++) 42 { 43 sum=0;ch='a'+i;//找出从a~z 44 for(j=0;j<len1;j++) 45 { 46 if(ch==str1[j])//进行判断 47 sum=sum+f(m-1);//求出总和 48 } 49 for(j=0;j<len2;j++) 50 { 51 if(ch==str2[j]) 52 sum=sum+f(m); 53 } 54 printf("%c:%lld\n",ch,sum);//分别打印 55 } 56 } 57 printf("\n"); 58 } 59 } 60 return 0; 61 }
这个问题中一个特点就是使用scanf输入,如果是cin的话就会超时。
另附一个从网上找到的代码:
1 #include<stdio.h> 2 #include<string.h> 3 char c[1000],s[1000]; 4 int a[27][100];//储存第1~100次所求字符串里边的第1~26个字母的个数. 5 int main() 6 { 7 int t,m,n,k,i,j; 8 scanf("%d",&t); 9 while(t--) 10 { 11 scanf("%s%s%d",c,s,&n); 12 int len=strlen(c);//测长度 13 int lem=strlen(s); 14 memset(a,0,sizeof(a));//清零a数组. 15 for(j=0;j<len;j++) 16 for(i=1;i<=26;i++) 17 if(c[j]==i+'a'-1)//如果当前字符等于第i个字母 18 a[i][1]++;//则在a[i][1]++; 19 for(j=0;j<lem;j++) 20 for(i=1;i<=26;i++) 21 if(s[j]==i+'a'-1) 22 a[i][2]++; //同理得到第二个字符串的 每一个字母有多少个. 23 for(i=1;i<=26;i++) 24 for(j=3;j<=n+1;j++) 25 a[i][j]=a[i][j-1]+a[i][j-2];//进行斐波那契相加. 26 for(i=1;i<=26;i++) 27 printf("%c:%d\n",i+'a'-1,a[i][n+1]); 28 printf("\n");//每一次样例后需要加一个换行,因为没看这个pe了一次. 29 } 30 return 0; 31 }