python基础一 day40 线程锁 信号量 事件

复制代码
锁:
import
time from threading import Lock,Thread # Lock 互斥锁 # def func(lock): # global n # lock.acquire() # temp = n # time.sleep(0.2) # n = temp - 1 # lock.release() # # n = 10 # t_lst = [] # lock = Lock() # for i in range(10): # t = Thread(target=func,args=(lock,)) # t.start() # t_lst.append(t) # for t in t_lst: t.join() # print(n)
复制代码
复制代码
# 科学家吃面

# noodle_lock  = Lock()
# fork_lock = Lock()
# def eat1(name):
#     noodle_lock.acquire()
#     print('%s拿到面条啦'%name)
#     fork_lock.acquire()
#     print('%s拿到叉子了'%name)
#     print('%s吃面'%name)
#     fork_lock.release()
#     noodle_lock.release()
#
# def eat2(name):
#     fork_lock.acquire()
#     print('%s拿到叉子了'%name)
#     time.sleep(1)
#     noodle_lock.acquire()
#     print('%s拿到面条啦'%name)
#     print('%s吃面'%name)
#     noodle_lock.release()
#     fork_lock.release()
#
# Thread(target=eat1,args=('alex',)).start()
# Thread(target=eat2,args=('Egon',)).start()
# Thread(target=eat1,args=('bossjin',)).start()
# Thread(target=eat2,args=('nezha',)).start()
复制代码
复制代码
from threading import RLock   # 递归锁
fork_lock = noodle_lock  = RLock()   # 一个钥匙串上的两把钥匙
def eat1(name):
    noodle_lock.acquire()            # 一把钥匙
    print('%s拿到面条啦'%name)
    fork_lock.acquire()
    print('%s拿到叉子了'%name)
    print('%s吃面'%name)
    fork_lock.release()
    noodle_lock.release()

def eat2(name):
    fork_lock.acquire()
    print('%s拿到叉子了'%name)
    time.sleep(1)
    noodle_lock.acquire()
    print('%s拿到面条啦'%name)
    print('%s吃面'%name)
    noodle_lock.release()
    fork_lock.release()

Thread(target=eat1,args=('alex',)).start()
Thread(target=eat2,args=('Egon',)).start()
Thread(target=eat1,args=('bossjin',)).start()
Thread(target=eat2,args=('nezha',)).start()
复制代码

递归锁RLock:在一个线程里可以多次acquire(),解决死锁问题

进程也有死锁问题,当在同一个线程或者同一个进程中,用到两把及以上的互斥锁的时候,容易出现死锁

为什么加锁:全局解释器锁(GIL)是给线程加了锁,是为了避免多个线程同一时间对一个数据进行操作,

但是并不能避免时间片的轮转带来的数据不安全性

lock.acquire()会阻塞

 

信号量:

复制代码
import time
from threading import Semaphore,Thread
def func(sem,a,b):
    sem.acquire()
    time.sleep(1)
    print(a+b)
    sem.release()

sem = Semaphore(4)
for i in range(10):
    t = Thread(target=func,args=(sem,i,i+5))
    t.start()
复制代码

事件:

# 事件被创建的时候
# False状态
# wait() 阻塞
# True状态
# wait() 非阻塞
# clear 设置状态为False
# set 设置状态为True

 

# 数据库 - 文件夹
# 文件夹里有好多excel表格
# 1.能够更方便的对数据进行增删改查
# 2.安全访问的机制


# 起两个线程
# 第一个线程 : 连接数据库
# 等待一个信号 告诉我我们之间的网络是通的
# 连接数据库
# 第二个线程 : 检测与数据库之间的网络是否连通
# time.sleep(0,2) 2
# 将事件的状态设置为True

复制代码
import time
import random
from threading import Thread,Event
def connect_db(e):
    count = 0
    while count < 3:
        e.wait(0.5)   # 状态为False的时候,我只等待1s就结束
        if e.is_set() == True:
            print('连接数据库')
            break
        else:
            count += 1
            print('第%s次连接失败'%count)
    else:
        raise TimeoutError('数据库连接超时')

def check_web(e):
    time.sleep(random.randint(0,3))
    e.set()

e = Event()
t1 = Thread(target=connect_db,args=(e,))
t2 = Thread(target=check_web,args=(e,))
t1.start()
t2.start()
复制代码

 

作者:静默虚空
欢迎任何形式的转载,但请务必注明出处。
限于本人水平,如果文章和代码有表述不当之处,还请不吝赐教。

posted @   谭文章  阅读(116)  评论(0编辑  收藏  举报
(评论功能已被禁用)
编辑推荐:
· Java 中堆内存和栈内存上的数据分布和特点
· 开发中对象命名的一点思考
· .NET Core内存结构体系(Windows环境)底层原理浅谈
· C# 深度学习:对抗生成网络(GAN)训练头像生成模型
· .NET 适配 HarmonyOS 进展
阅读排行:
· 手把手教你更优雅的享受 DeepSeek
· 腾讯元宝接入 DeepSeek R1 模型,支持深度思考 + 联网搜索,好用不卡机!
· AI工具推荐:领先的开源 AI 代码助手——Continue
· 探秘Transformer系列之(2)---总体架构
· V-Control:一个基于 .NET MAUI 的开箱即用的UI组件库
点击右上角即可分享
微信分享提示