[网鼎杯2020]you_raise_me_up
[网鼎杯2020]you_raise_me_up
题目
#!/usr/bin/env python
# -*- coding: utf-8 -*-
from Crypto.Util.number import *
import random
n = 2 ** 512
m = random.randint(2, n-1) | 1 #返回2到n-1之间的任意整数
c = pow(m, bytes_to_long(flag), n)
print 'm = ' + str(m)
print 'c = ' + str(c)
# m = 391190709124527428959489662565274039318305952172936859403855079581402770986890308469084735451207885386318986881041563704825943945069343345307381099559075
# c = 6665851394203214245856789450723658632520816791621796775909766895233000234023642878786025644953797995373211308485605397024123180085924117610802485972584499
分析
首先我们可以得到:$$c=m^{flag}mod,n$$
想要求出flag就要清楚:这是一道求离散对数的问题。
首先我们需要知道什么是离散对数:
\[a^x≡b(mod\,m) \]已知a,b,m,求解x
可见这是一道非常标准的离散对数问题求解。
已知:$$c=m^{flag}mod,n$$ 和c,m,n的值。
求离散对数:
\[flag=log_{m\,mod\,n}(c\,mod\,n)
\]
因为c是余数,所以:$$flag=log_{m,mod,n}c$$
解法一:sage
sage已经不陌生了,毕竟上次做一道羊城杯的题目用到了。
sage中的discrete_log()可以帮我们计算集散对数:
discrete_log()使用示例
由此编写脚本:
m=391190709124527428959489662565274039318305952172936859403855079581402770986890308469084735451207885386318986881041563704825943945069343345307381099559075
n=2**512
c=6665851394203214245856789450723658632520816791621796775909766895233000234023642878786025644953797995373211308485605397024123180085924117610802485972584499
flag= discrete_log((mod(c,n)), (mod(m,n)))
print(flag)
得到flag值之后再进行一个转:
from Crypto.Util.number import *
flag=56006392793405651552924479293096841126763872290794186417054288110043102953612574215902230811593957757
print(long_to_bytes(flag))
#b'flag{5f95ca93-1594-762d-ed0b-a9139692cb4a}'
补充
sage中求解离散对数有四个比较常用的函数:
(1)discrete_log:通用的求离散对数的方法:discrete_log(a,base,ord,operation)
(2)discrete_log_rho:求离散对数的Pollard-Rho算法:discrete_log_rho(a,base,ord,operation)
(3)discrete_log_lambda:求离散对数的Pollard-kangaroo算法(也称为lambda算法):discrete_log_lambda(a,base,bounds,operation)
(4)bsgs:小步大步法:bsgs(base,a,bounds,operation)
在线运行sage脚本:https://sagecell.sagemath.org/
解法二:python
求解离散对数问题可以用到python的sympy库中的discrete_log()函数。
discrete_log()使用示例
from sympy.ntheory import discrete_log
discrete_log(41, 15, 7)
写脚本:
from Crypto.Util.number import *
from sympy.ntheory import discrete_log
n = 2**512
m = 391190709124527428959489662565274039318305952172936859403855079581402770986890308469084735451207885386318986881041563704825943945069343345307381099559075
c = 6665851394203214245856789450723658632520816791621796775909766895233000234023642878786025644953797995373211308485605397024123180085924117610802485972584499
flag= discrete_log(n,c,m)
print(long_to_bytes(flag))
#b'flag{5f95ca93-1594-762d-ed0b-a9139692cb4a}'
总结
考查离散对数的概念以及求解离散对数。