YOLOv8-seg训练与推理

1.YOLOv8-seg简介

   YOLOv8-seg是YOLO系列模型的其中一个版本。YOLOv8-seg在继承YOLO系列模型高效性和准确性的基础上,增加了实例分割的能力。 

2.数据集

  使用的数据集较简单,主要以下目录:

  images:存放原始图片(1500张),大小为128x128。部分如下:

 

  images_json:存放labelme标注的json文件与原图。部分图如下:

  masks:存放单通道掩码

 

  mask_txt:存放masks中每个标签掩码图对应的每个像素值

       

   palette_mask:存放标签掩码图的调色板图或伪彩色图。

  事实上,本次训练任务只需要images与images_json。

3.下载安装包

  需要下载ultralytics,github下载或者pip安装(pip安装只有ultralytics),建议github下载,里面内容更全,包括例子与说明。

  官网github地址:https://github.com/ultralytics/ultralytics

  官网文档:https://docs.ultralytics.com/

  下载后,主要关注examples与ultralytics

 

3.获取YOLOV8-seg训练的数据集格式及文件

  YOLOV8-seg模型在进行实例分割时,首先会执行目标检测以识别图像中的物体,然后再对这些物体进行分割。故训练时需要分割预训练权重yolov8n-seg.pt的同时,也需要对应的目标检测yolov8n.pt权重。如果网络良好可以不用下载,当程序检测到没有这些文件时,会自动下载。关于这两个文件直接去官网下载或者网上下载(如图),这里也给个百度盘的链接:   链接:https://pan.baidu.com/s/1Tkzi8bflpIuGTIqR18AFOg提取码:hniz

 

  3.1划分数据集与生成yaml文件

# -*- coding: utf-8 -*-
from tqdm import tqdm
import shutil
import random
import os
import argparse
from collections import Counter
import yaml
import json


# 检查文件夹是否存在
def mkdir(path):
    if not os.path.exists(path):
        os.makedirs(path)

def convert_to_polygon(point1,point2):
    x1, y1 = point1
    x2, y2 = point2
    return [[x1,y1],[x2,y1],[x2,y2],[x1,y2]]


def convert_label_json(json_dir, save_dir, classes):
    json_paths = os.listdir(json_dir)
    classes = classes.split(',')
    mkdir(save_dir)

    for json_path in tqdm(json_paths):
        # for json_path in json_paths:
        path = os.path.join(json_dir, json_path)
        with open(path, 'r') as load_f:
            json_dict = json.load(load_f)
        h, w = json_dict['imageHeight'], json_dict['imageWidth']

        # save txt path
        txt_path = os.path.join(save_dir, json_path.replace('json', 'txt'))
        txt_file = open(txt_path, 'w')

        for shape_dict in json_dict['shapes']:
            shape_type = shape_dict.get('shape_type',None)
            label = shape_dict['label']
            label_index = classes.index(label)
            points = shape_dict['points']
            if shape_type == "rectangle":
                point1=points[0]
                point2=points[1]
                points=convert_to_polygon(point1,point2)

            points_nor_list = []

            for point in points:
                points_nor_list.append(point[0] / w)
                points_nor_list.append(point[1] / h)

            points_nor_list = list(map(lambda x: str(x), points_nor_list))
            points_nor_str = ' '.join(points_nor_list)

            label_str = str(label_index) + ' ' + points_nor_str + '\n'
            txt_file.writelines(label_str)


def get_classes(json_dir):
    '''
    统计路径下 JSON 文件里的各类别标签数量
    '''
    names = []
    json_files = [os.path.join(json_dir, f) for f in os.listdir(json_dir) if f.endswith('.json')]

    for json_path in json_files:
        with open(json_path, 'r') as f:
            data = json.load(f)
            for shape in data['shapes']:
                name = shape['label']
                names.append(name)

    result = Counter(names)
    return result


def main(image_dir, json_dir, txt_dir, save_dir):
    # 创建文件夹
    mkdir(save_dir)
    images_dir = os.path.join(save_dir, 'images')
    labels_dir = os.path.join(save_dir, 'labels')

    img_train_path = os.path.join(images_dir, 'train')
    img_val_path = os.path.join(images_dir, 'val')

    label_train_path = os.path.join(labels_dir, 'train')
    label_val_path = os.path.join(labels_dir, 'val')

    mkdir(images_dir)
    mkdir(labels_dir)
    mkdir(img_train_path)
    mkdir(img_val_path)
    mkdir(label_train_path)
    mkdir(label_val_path)

    # 数据集划分比例,训练集75%,验证集15%,测试集15%,按需修改
    train_percent = 0.90
    val_percent = 0.10

    total_txt = os.listdir(txt_dir)
    num_txt = len(total_txt)
    list_all_txt = range(num_txt)  # 范围 range(0, num)

    num_train = int(num_txt * train_percent)
    num_val = int(num_txt * val_percent)

    train = random.sample(list_all_txt, num_train)
    # 在全部数据集中取出train
    val = [i for i in list_all_txt if not i in train]
    # 再从val_test取出num_val个元素,val_test剩下的元素就是test
    # val = random.sample(list_all_txt, num_val)

    print("训练集数目:{}, 验证集数目:{}".format(len(train), len(val)))
    for i in list_all_txt:
        name = total_txt[i][:-4]

        srcImage = os.path.join(image_dir, name + '.png')#如果图片是jpg就改为.jpg
        srcLabel = os.path.join(txt_dir, name + '.txt')

        if i in train:
            dst_train_Image = os.path.join(img_train_path, name + '.png')#如果图片是jpg就改为.jpg
            dst_train_Label = os.path.join(label_train_path, name + '.txt')
            shutil.copyfile(srcImage, dst_train_Image)
            shutil.copyfile(srcLabel, dst_train_Label)
        elif i in val:
            dst_val_Image = os.path.join(img_val_path, name + '.png')#如果图片是jpg就改为.jpg
            dst_val_Label = os.path.join(label_val_path, name + '.txt')
            shutil.copyfile(srcImage, dst_val_Image)
            shutil.copyfile(srcLabel, dst_val_Label)

    obj_classes = get_classes(json_dir)
    classes = list(obj_classes.keys())

    # 编写yaml文件
    classes_txt = {i: classes[i] for i in range(len(classes))}  # 标签类别
    data = {
        'path': os.path.join(os.getcwd(), save_dir),
        'train': "images/train",
        'val': "images/val",
        'names': classes_txt,
        'nc': len(classes)
    }
    with open(save_dir + '/segment.yaml', 'w', encoding="utf-8") as file:
        yaml.dump(data, file, allow_unicode=True)
    print("标签:", dict(obj_classes))


if __name__ == "__main__":
  
    classes_list = 'circle,rect'  # 类名

    parser = argparse.ArgumentParser(description='json convert to txt params')
    parser.add_argument('--image-dir', type=str, default=r'D:\software\pythonworksapce\yolo8_seg_train\data\images', help='图片地址') #图片文件夹路径
    parser.add_argument('--json-dir', type=str, default=r'D:\software\pythonworksapce\yolo8_seg_train\data\json_out', help='json地址')#labelme标注的纯json文件夹路径
    parser.add_argument('--txt-dir', type=str, default=r'D:\software\pythonworksapce\yolo8_seg_train\train_data\save_txt', help='保存txt文件地址')#标注的坐标的txt文件存放的路径
    parser.add_argument('--save-dir', default=r'D:\software\pythonworksapce\yolo8_seg_train\train_data', type=str, help='保存最终分割好的数据集地址')#segment.yaml存放的路径
    parser.add_argument('--classes', type=str, default=classes_list, help='classes')
    args = parser.parse_args()
    json_dir = args.json_dir
    txt_dir = args.txt_dir
    image_dir = args.image_dir
    save_dir = args.save_dir
    classes = args.classes
    # json格式转txt格式
    convert_label_json(json_dir, txt_dir, classes)
    # 划分数据集,生成yaml训练文件
    main(image_dir, json_dir, txt_dir, save_dir)

  上述代码中,生成的数据集,只支持多边形标注与矩形标注。

  划分完后,train_data目录下将会生成如下文件:

   images中有tain,val两个文件夹,每个文件夹包含原始图片

   labels中有tain,val两个文件夹,每个文件夹包含每个图对应的txt文件,文件中每行的最前面为数字类别索引,后面为x1 y1 x2 y2 x3 y3 ......组成的坐标点归一化后的数据。如图:

   save_txt为中间生成的,用于划分labels的

   segment.yaml为训练时需要配置的文件,nc表示类别数,具体内容如下:

 4.训练

from ultralytics import YOLO


if __name__ == '__main__':
    # https://github.com/ultralytics/assets/releases/download/v0.0.0/yolov8n.pt
    model = YOLO(r"D:\software\pythonworksapce\yolo8_seg_train\yolov8n-seg.yaml",task="segment").load(r"D:\software\pythonworksapce\yolo8_seg_train\runs\segment\train4\weights\last.pt")  # build from YAML and transfer weights
    results = model.train(data=r"D:\software\pythonworksapce\yolo8_seg_train\train_data\segment.yaml", epochs=200,imgsz=128, device=[0])

  注意:我们写的yolov8n-seg.yaml,其实有yolov8-seg.yaml这个文件就可以了,后面的n程序会自动适配到最小的模型,可以参考yolov8-seg.yaml源文件注释。

5.转onnx模型

from ultralytics import YOLO

# Load a model
# model = YOLO("yolo11n.pt")  # load an official model
model = YOLO(r"D:\software\pythonworksapce\yolo8_seg_train\runs\segment\train\weights\best.pt")  # load a custom trained model

# Export the model
model.export(format="onnx")

5.onnx推理

  可以使用ultralytics自带的onnx推理程序。如图:

   这里我稍微添加了几个自定义的函数,推理代码及结果如下:

import argparse
import os

from datetime import datetime
import cv2
import numpy as np
import onnxruntime as ort

from ultralytics.utils import ASSETS, yaml_load
from ultralytics.utils.checks import check_yaml
from ultralytics.utils.plotting import Colors


class YOLOv8Seg:
    """YOLOv8 segmentation model."""

    def __init__(self, onnx_model, yaml_path="coco128.yaml"):
        """
        Initialization.

        Args:
            onnx_model (str): Path to the ONNX model.
        """

        # Build Ort session
        self.session = ort.InferenceSession(onnx_model,
                                            providers=['CUDAExecutionProvider', 'CPUExecutionProvider']
                                            if ort.get_device() == 'GPU' else ['CPUExecutionProvider'])

        # Numpy dtype: support both FP32 and FP16 onnx model
        self.ndtype = np.half if self.session.get_inputs()[0].type == 'tensor(float16)' else np.single

        # Get model width and height(YOLOv8-seg only has one input)
        self.model_height, self.model_width = [x.shape for x in self.session.get_inputs()][0][-2:]

        # Load COCO class names
        self.classes = yaml_load(check_yaml(yaml_path))['names']

        # Create color palette
        self.color_palette = Colors()

    def __call__(self, im0, conf_threshold=0.4, iou_threshold=0.45, nm=32):
        """
        The whole pipeline: pre-process -> inference -> post-process.

        Args:
            im0 (Numpy.ndarray): original input image.
            conf_threshold (float): confidence threshold for filtering predictions.
            iou_threshold (float): iou threshold for NMS.
            nm (int): the number of masks.

        Returns:
            boxes (List): list of bounding boxes.
            segments (List): list of segments.
            masks (np.ndarray): [N, H, W], output masks.
        """

        # Pre-process
        im, ratio, (pad_w, pad_h) = self.preprocess(im0)
        print("im.shape", im.shape)
        # Ort inference
        preds = self.session.run(None, {self.session.get_inputs()[0].name: im})

        # Post-process
        boxes, segments, masks = self.postprocess(preds,
                                                  im0=im0,
                                                  ratio=ratio,
                                                  pad_w=pad_w,
                                                  pad_h=pad_h,
                                                  conf_threshold=conf_threshold,
                                                  iou_threshold=iou_threshold,
                                                  nm=nm)
        return boxes, segments, masks

    def preprocess(self, img):
        """
        Pre-processes the input image.

        Args:
            img (Numpy.ndarray): image about to be processed.

        Returns:
            img_process (Numpy.ndarray): image preprocessed for inference.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
        """

        # Resize and pad input image using letterbox() (Borrowed from Ultralytics)
        shape = img.shape[:2]  # original image shape
        new_shape = (self.model_height, self.model_width)
        r = min(new_shape[0] / shape[0], new_shape[1] / shape[1])
        ratio = r, r
        new_unpad = int(round(shape[1] * r)), int(round(shape[0] * r))
        pad_w, pad_h = (new_shape[1] - new_unpad[0]) / 2, (new_shape[0] - new_unpad[1]) / 2  # wh padding
        if shape[::-1] != new_unpad:  # resize
            img = cv2.resize(img, new_unpad, interpolation=cv2.INTER_LINEAR)
        top, bottom = int(round(pad_h - 0.1)), int(round(pad_h + 0.1))
        left, right = int(round(pad_w - 0.1)), int(round(pad_w + 0.1))
        img = cv2.copyMakeBorder(img, top, bottom, left, right, cv2.BORDER_CONSTANT, value=(114, 114, 114))

        # Transforms: HWC to CHW -> BGR to RGB -> div(255) -> contiguous -> add axis(optional)
        img = np.ascontiguousarray(np.einsum('HWC->CHW', img)[::-1], dtype=self.ndtype) / 255.0
        img_process = img[None] if len(img.shape) == 3 else img
        return img_process, ratio, (pad_w, pad_h)

    def postprocess(self, preds, im0, ratio, pad_w, pad_h, conf_threshold, iou_threshold, nm=32):
        """
        Post-process the prediction.

        Args:
            preds (Numpy.ndarray): predictions come from ort.session.run().
            im0 (Numpy.ndarray): [h, w, c] original input image.
            ratio (tuple): width, height ratios in letterbox.
            pad_w (float): width padding in letterbox.
            pad_h (float): height padding in letterbox.
            conf_threshold (float): conf threshold.
            iou_threshold (float): iou threshold.
            nm (int): the number of masks.

        Returns:
            boxes (List): list of bounding boxes.
            segments (List): list of segments.
            masks (np.ndarray): [N, H, W], output masks.
        """
        x, protos = preds[0], preds[1]  # Two outputs: predictions and protos

        # Transpose the first output: (Batch_size, xywh_conf_cls_nm, Num_anchors) -> (Batch_size, Num_anchors, xywh_conf_cls_nm)
        x = np.einsum('bcn->bnc', x)

        # Predictions filtering by conf-threshold
        x = x[np.amax(x[..., 4:-nm], axis=-1) > conf_threshold]

        # Create a new matrix which merge these(box, score, cls, nm) into one
        # For more details about `numpy.c_()`: https://numpy.org/doc/1.26/reference/generated/numpy.c_.html
        x = np.c_[x[..., :4], np.amax(x[..., 4:-nm], axis=-1), np.argmax(x[..., 4:-nm], axis=-1), x[..., -nm:]]

        # NMS filtering
        x = x[cv2.dnn.NMSBoxes(x[:, :4], x[:, 4], conf_threshold, iou_threshold)]
        # print("x",x)
        # Decode and return
        if len(x) > 0:

            # Bounding boxes format change: cxcywh -> xyxy
            x[..., [0, 1]] -= x[..., [2, 3]] / 2
            x[..., [2, 3]] += x[..., [0, 1]]

            # Rescales bounding boxes from model shape(model_height, model_width) to the shape of original image
            x[..., :4] -= [pad_w, pad_h, pad_w, pad_h]
            x[..., :4] /= min(ratio)

            # Bounding boxes boundary clamp
            x[..., [0, 2]] = x[:, [0, 2]].clip(0, im0.shape[1])
            x[..., [1, 3]] = x[:, [1, 3]].clip(0, im0.shape[0])

            # Process masks
            masks = self.process_mask(protos[0], x[:, 6:], x[:, :4], im0.shape)

            # Masks -> Segments(contours)
            segments = self.masks2segments(masks)
            return x[..., :6], segments, masks  # boxes, segments, masks
        else:
            return [], [], []

    @staticmethod
    def masks2segments(masks):
        """
        It takes a list of masks(n,h,w) and returns a list of segments(n,xy) (Borrowed from
        https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L750)

        Args:
            masks (numpy.ndarray): the output of the model, which is a tensor of shape (batch_size, 160, 160).

        Returns:
            segments (List): list of segment masks.
        """
        segments = []
        for x in masks.astype('uint8'):
            c = cv2.findContours(x, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_NONE)[0]  # CHAIN_APPROX_SIMPLE
            if c:
                c = np.array(c[np.array([len(x) for x in c]).argmax()]).reshape(-1, 2)
            else:
                c = np.zeros((0, 2))  # no segments found
            segments.append(c.astype('float32'))
        return segments

    @staticmethod
    def crop_mask(masks, boxes):
        """
        It takes a mask and a bounding box, and returns a mask that is cropped to the bounding box. (Borrowed from
        https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L599)

        Args:
            masks (Numpy.ndarray): [n, h, w] tensor of masks.
            boxes (Numpy.ndarray): [n, 4] tensor of bbox coordinates in relative point form.

        Returns:
            (Numpy.ndarray): The masks are being cropped to the bounding box.
        """
        n, h, w = masks.shape
        x1, y1, x2, y2 = np.split(boxes[:, :, None], 4, 1)
        r = np.arange(w, dtype=x1.dtype)[None, None, :]
        c = np.arange(h, dtype=x1.dtype)[None, :, None]
        return masks * ((r >= x1) * (r < x2) * (c >= y1) * (c < y2))

    def process_mask(self, protos, masks_in, bboxes, im0_shape):
        """
        Takes the output of the mask head, and applies the mask to the bounding boxes. This produces masks of higher quality
        but is slower. (Borrowed from https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L618)

        Args:
            protos (numpy.ndarray): [mask_dim, mask_h, mask_w].
            masks_in (numpy.ndarray): [n, mask_dim], n is number of masks after nms.
            bboxes (numpy.ndarray): bboxes re-scaled to original image shape.
            im0_shape (tuple): the size of the input image (h,w,c).

        Returns:
            (numpy.ndarray): The upsampled masks.
        """
        c, mh, mw = protos.shape
        masks = np.matmul(masks_in, protos.reshape((c, -1))).reshape((-1, mh, mw)).transpose(1, 2, 0)  # HWN
        masks = np.ascontiguousarray(masks)
        masks = self.scale_mask(masks, im0_shape)  # re-scale mask from P3 shape to original input image shape
        masks = np.einsum('HWN -> NHW', masks)  # HWN -> NHW
        masks = self.crop_mask(masks, bboxes)
        return np.greater(masks, 0.5)

    @staticmethod
    def scale_mask(masks, im0_shape, ratio_pad=None):
        """
        Takes a mask, and resizes it to the original image size. (Borrowed from
        https://github.com/ultralytics/ultralytics/blob/465df3024f44fa97d4fad9986530d5a13cdabdca/ultralytics/utils/ops.py#L305)

        Args:
            masks (np.ndarray): resized and padded masks/images, [h, w, num]/[h, w, 3].
            im0_shape (tuple): the original image shape.
            ratio_pad (tuple): the ratio of the padding to the original image.

        Returns:
            masks (np.ndarray): The masks that are being returned.
        """
        im1_shape = masks.shape[:2]
        if ratio_pad is None:  # calculate from im0_shape
            gain = min(im1_shape[0] / im0_shape[0], im1_shape[1] / im0_shape[1])  # gain  = old / new
            pad = (im1_shape[1] - im0_shape[1] * gain) / 2, (im1_shape[0] - im0_shape[0] * gain) / 2  # wh padding
        else:
            pad = ratio_pad[1]

        # Calculate tlbr of mask
        top, left = int(round(pad[1] - 0.1)), int(round(pad[0] - 0.1))  # y, x
        bottom, right = int(round(im1_shape[0] - pad[1] + 0.1)), int(round(im1_shape[1] - pad[0] + 0.1))
        if len(masks.shape) < 2:
            raise ValueError(f'"len of masks shape" should be 2 or 3, but got {len(masks.shape)}')
        masks = masks[top:bottom, left:right]
        masks = cv2.resize(masks, (im0_shape[1], im0_shape[0]),
                           interpolation=cv2.INTER_LINEAR)  # INTER_CUBIC would be better
        if len(masks.shape) == 2:
            masks = masks[:, :, None]
        return masks

    def draw_and_visualize(self, im, bboxes, segments, vis=False, save=True):
        """
        Draw and visualize results.

        Args:
            im (np.ndarray): original image, shape [h, w, c].
            bboxes (numpy.ndarray): [n, 4], n is number of bboxes.
            segments (List): list of segment masks.
            vis (bool): imshow using OpenCV.
            save (bool): save image annotated.

        Returns:
            None
        """

        # Draw rectangles and polygons
        im_canvas = im.copy()
        for (*box, conf, cls_), segment in zip(bboxes, segments):
            # draw contour and fill mask
            cv2.polylines(im, np.int32([segment]), True, (255, 255, 255), 2)  # white borderline
            cv2.fillPoly(im_canvas, np.int32([segment]), self.color_palette(int(cls_), bgr=True))

            # draw bbox rectangle
            cv2.rectangle(im, (int(box[0]), int(box[1])), (int(box[2]), int(box[3])),
                          self.color_palette(int(cls_), bgr=True), 1, cv2.LINE_AA)
            cv2.putText(im, f'{self.classes[cls_]}: {conf:.3f}', (int(box[0]), int(box[1] - 9)),
                        cv2.FONT_HERSHEY_SIMPLEX, 0.7, self.color_palette(int(cls_), bgr=True), 2, cv2.LINE_AA)

        # Mix image
        im = cv2.addWeighted(im_canvas, 0.3, im, 0.7, 0)

        # Show image
        if vis:
            cv2.imshow('demo', im)
            cv2.waitKey(0)
            cv2.destroyAllWindows()

        # Save image
        if save:
            from datetime import datetime
            # 获取当前时间
            now = datetime.now()
            # 格式化为 '年月日时分秒毫秒'
            formatted_time = now.strftime('%Y%m%d%H%M%S') + str(now.microsecond // 1000).zfill(3)
            cv2.imwrite(f'{formatted_time}.jpg', im)


####self def
def load_yolov8_seg_onnx_model(onnx_path, yaml_path):
    yolov8_seg_model = YOLOv8Seg(onnx_path, yaml_path=yaml_path)

    return yolov8_seg_model


####self def
def call_yolov8_seg_onnx_inference(img, yolov8_seg_model, conf=0.25, iou=0.45):
    boxes, segments, _ = yolov8_seg_model(img, conf_threshold=conf, iou_threshold=iou)
    return boxes, segments, _


####self def
def get_points_rect_class(boxes, segments):
    for box, seg_points in zip(boxes, segments):
        # print("type(seg_points)",type(seg_points))
        class_index = int(box[-1])
        confidence = box[-2]
        # left_top
        left_top_x = box[0]
        left_top_y = box[1]
        # right_botton
        right_bottom_x = box[2]
        right_bottom_y = box[3]

        x = int(left_top_x)
        y = int(left_top_y)
        w = int(right_bottom_x - left_top_x)
        h = int(right_bottom_y - left_top_y)
        seg_points = seg_points.astype(int)

        yield x, y, w, h, seg_points, class_index, confidence


####self def
def get_image_paths(folder_path, extension=".png", is_use_extension=False):
    image_paths = []

    # 遍历目录
    for root, dirs, files in os.walk(folder_path):
        for file in files:
            # 检查文件扩展名
            if file.endswith(extension) or is_use_extension == False:
                # 构造完整的文件路径并添加到列表
                image_path = os.path.join(root, file)
                image_paths.append(image_path)

    return image_paths


####self def
def get_boxes_contour(points):
    contour = points.reshape((-1, 1, 2))
    return contour


if __name__ == '__main__':
    folder_path = r'D:\software\pythonworksapce\yolo8_seg_train\pre'
    onnx_path = r'D:\software\pythonworksapce\yolo8_seg_train\runs\segment\train\weights\best.onnx'
    yaml_path = r'D:\software\pythonworksapce\yolo8_seg_train\train_data\segment.yaml'
    yolov8_seg_model = load_yolov8_seg_onnx_model(onnx_path, yaml_path)
    images_paths = get_image_paths(folder_path, extension=".png")

    for img_path in images_paths:
        print("img_path", img_path)
        img = cv2.imread(img_path, 1)
        boxes, segments, _ = call_yolov8_seg_onnx_inference(img, yolov8_seg_model, conf=0.5, iou=0.4) #每个图的结果都在这里
        if len(boxes) > 0:
            yolov8_seg_model.draw_and_visualize(img, boxes, segments, vis=False, save=True)

  测试的五张图效果如下:

                            原图

                          模型推理的效果图(与上图一一对应,这里使用时间命名了)

  最后训了一个道路的数据集,看下效果。

  数据集(几何图)链接:

  通过网盘分享的文件:data.zip
  链接: https://pan.baidu.com/s/1ZGnxNYz2pynRC1EtSAagjw 提取码: awie

 

  小结:本文只是对yolov8-seg模型的训练进行了叙述,并未讲解模型结构,后续会再补充。另外本文再使用onnx推理图片时,使用了自带的ultralytics中自带的YOLOv8Seg这个类推理预测,但是也会导致程序冗余,比如会加载不需要使用的torch等包,读者可以研读代码,将核心代码提取出来,重新定义自己的预处理,后处理函数。

 

  若存在不足之处,欢迎评论与指正。

posted @ 2024-10-08 13:30  wancy  阅读(1212)  评论(0编辑  收藏  举报