Storm-jdbc-2讲 高级API及Trident
之前对Storm集成JDBC写了一个简单的demo,最近深度研究了下,代码如下
首先,先写一个抽象类,便于减少代码的重复性:
import com.google.common.collect.Lists;
import com.google.common.collect.Maps;
import org.apache.storm.Config;
import org.apache.storm.LocalCluster;
import org.apache.storm.StormSubmitter;
import org.apache.storm.generated.StormTopology;
import org.apache.storm.jdbc.common.Column;
import org.apache.storm.jdbc.common.ConnectionProvider;
import org.apache.storm.jdbc.common.HikariCPConnectionProvider;
import org.apache.storm.jdbc.common.JdbcClient;
import org.apache.storm.jdbc.mapper.JdbcLookupMapper;
import org.apache.storm.jdbc.mapper.JdbcMapper;
import org.apache.storm.jdbc.mapper.SimpleJdbcLookupMapper;
import org.apache.storm.jdbc.mapper.SimpleJdbcMapper;
import org.apache.storm.tuple.Fields;
import java.sql.Types;
import java.util.ArrayList;
import java.util.List;
import java.util.Map;
/**
* @author cwc
* @date 2018年6月30日
* @description:这里创建一个抽象类,提高代码的重用性
* @version 1.0.0
*/
public abstract class AbstractUserTopology {
//sql语句 建标,建字段,自己灵活使用
private static final List<String> setupSqls = Lists.newArrayList(
"drop table if exists user",
"drop table if exists department",
"drop table if exists user_department",
"create table if not exists user (user_id integer, user_name varchar(100), dept_name varchar(100), create_date date)",
"create table if not exists department (dept_id integer, dept_name varchar(100))",
"create table if not exists user_department (user_id integer, dept_id integer)",
"insert into department values (1, 'R&D')",
"insert into department values (2, 'Finance')",
"insert into department values (3, 'HR')",
"insert into department values (4, 'Sales')",
"insert into user_department values (1, 1)",
"insert into user_department values (2, 2)",
"insert into user_department values (3, 3)",
"insert into user_department values (4, 4)"
);
protected JdbcSpout jdbcSpout;//测试使用的spout
protected JdbcMapper jdbcMapper;//用于映射的Mapper
protected JdbcLookupMapper jdbcLookupMapper;
//线程安全的 实现了ConnectionProvider接口 有三个方法 prepare(),getConnection() 获取连接,cleanUp(),接口采用直接赋值
protected ConnectionProvider connectionProvider;
protected static final String TABLE_NAME = "storms";//表名
protected static final String JDBC_CONF = "jdbc.conf";//jdbc配置
protected static final String SELECT_QUERY = "select dept_name from department, user_department where department.dept_id = user_department.dept_id" +
" and user_department.user_id = ?";//查询sql语句
public void execute(String[] args) throws Exception {
//将配置放入map当中
Map map = Maps.newHashMap();
map.put("dataSourceClassName", "com.mysql.jdbc.jdbc2.optional.MysqlDataSource");
map.put("dataSource.url", "jdbc:mysql://localhost:3306/mytest?useUnicode=true&characterEncoding=UTF-8&serverTimezone=Asia/Shanghai");
map.put("dataSource.user", "root");
map.put("dataSource.password", "密码");
Config config = new Config();
config.put(JDBC_CONF, map);//加载到配置中
ConnectionProvider connectionProvider = new HikariCPConnectionProvider(map);
//对数据库连接池进行初始化
connectionProvider.prepare();
//数据查找超时时间
int queryTimeoutSecs = 60;
//获得数据库连接
JdbcClient jdbcClient = new JdbcClient(connectionProvider, queryTimeoutSecs);
//创建表及字段
for (String sql : setupSqls) {
System.err.println("sql:" + sql);
//执行sql语句
jdbcClient.executeSql(sql);
}
this.jdbcSpout = new JdbcSpout();
//通过connectionProvider和table自己去获取数据表的metadata(元数据)表字段的类型,名称,初始化schemaColumns
// 使用tableName进行插入数据,需要指定表中的所有字段
this.jdbcMapper = new SimpleJdbcMapper(TABLE_NAME, connectionProvider);
//关闭数据库连接池
connectionProvider.cleanup();
//上面的代码可以独立运行
Fields outputFields = new Fields("user_id", "user_name", "dept_name", "create_date");
//指定查询条件字段 user_id的值是spout中发射出user_id的值
List<Column> queryParamColumns = Lists.newArrayList(new Column("user_id", Types.INTEGER));
//通过查询为outputFields中的 dept_name赋值 其他三个字段是原始spout中的
this.jdbcLookupMapper = new SimpleJdbcLookupMapper(outputFields, queryParamColumns);
//拿到还未初始化的连接
this.connectionProvider = new HikariCPConnectionProvider(map);
String topoName = "test";
if (args.length == 0||args ==null) {
//当args为0,就本地使用
LocalCluster cluster = new LocalCluster();
cluster.submitTopology(topoName, config, getTopology());
Thread.sleep(1000000);//这个时为了防止你忘记关闭程序,造成内存爆炸,但是不要设置时间太小,太小程序没跑完就终止了,要报错。
cluster.shutdown();
} else {
StormSubmitter.submitTopology(args[4], config, getTopology());
}
}
public abstract StormTopology getTopology();
}
接下来是普通的storm方法来写入数据:
import com.google.common.collect.Lists;
import org.apache.storm.generated.StormTopology;
import org.apache.storm.jdbc.bolt.JdbcInsertBolt;
import org.apache.storm.jdbc.bolt.JdbcLookupBolt;
import org.apache.storm.jdbc.common.Column;
import org.apache.storm.jdbc.mapper.JdbcMapper;
import org.apache.storm.jdbc.mapper.SimpleJdbcMapper;
import org.apache.storm.topology.TopologyBuilder;
import java.sql.Types;
import java.util.List;
/**
* @author cwc
* @date 2018年7月4日
* @version 2.0.0
* @description:将数据批量写入表中
*/
public class PersistanceTopology extends AbstractUserTopology {
private static final String USER_SPOUT = "USER_SPOUT";
private static final String LOOKUP_BOLT = "LOOKUP_BOLT";
private static final String PERSISTANCE_BOLT = "PERSISTANCE_BOLT";
public static void main(String[] args) throws Exception {
new PersistanceTopology().execute(args);//继承的方法,从而获得了连接
}
@Override
public StormTopology getTopology() {
JdbcLookupBolt departmentLookupBolt = new JdbcLookupBolt(connectionProvider, SELECT_QUERY, this.jdbcLookupMapper);
//获取映射字段
List<Column> schemaColumns = Lists.newArrayList(new Column("create_date", Types.DATE),
new Column("dept_name", Types.VARCHAR), new Column("user_id", Types.INTEGER), new Column("user_name", Types.VARCHAR));
JdbcMapper mapper = new SimpleJdbcMapper(schemaColumns);
//创建bolt
JdbcInsertBolt userPersistanceBolt = new JdbcInsertBolt(connectionProvider, mapper)
.withInsertQuery("insert into user (create_date, dept_name, user_id, user_name) values (?,?,?,?)");
TopologyBuilder builder = new TopologyBuilder();
builder.setSpout(USER_SPOUT, this.jdbcSpout, 1);
builder.setBolt(LOOKUP_BOLT, departmentLookupBolt, 1).shuffleGrouping(USER_SPOUT);
builder.setBolt(PERSISTANCE_BOLT, userPersistanceBolt, 1).shuffleGrouping(LOOKUP_BOLT);
return builder.createTopology();
}
}
使用Trident方法写入数据库:
import org.apache.storm.generated.StormTopology;
import org.apache.storm.tuple.Fields;
import com.google.common.collect.Lists;
import com.sunsheen.jfids.bigdata.storm.demo.count.TestSpout;
import com.sunsheen.jfids.bigdata.storm.demo.jdbc.AbstractUserTopology;
import com.sunsheen.jfids.bigdata.storm.demo.jdbc.JdbcSpout;
import org.apache.storm.jdbc.common.Column;
import org.apache.storm.jdbc.mapper.SimpleJdbcLookupMapper;
import org.apache.storm.jdbc.trident.state.JdbcQuery;
import org.apache.storm.jdbc.trident.state.JdbcState;
import org.apache.storm.jdbc.trident.state.JdbcStateFactory;
import org.apache.storm.jdbc.trident.state.JdbcUpdater;
import org.apache.storm.trident.Stream;
import org.apache.storm.trident.TridentState;
import org.apache.storm.trident.TridentTopology;
import java.sql.Types;
/**
* @author cwc
* @date 2018年7月4日
* @version 1.0.0
* @description:将数据通过Trident的方法写入数据库表中
*/
public class UserPersistanceTridentTopology extends AbstractUserTopology {
public static void main(String[] args) throws Exception {
new UserPersistanceTridentTopology().execute(args);
}
@Override
public StormTopology getTopology() {
TridentTopology topology = new TridentTopology();
//这里通过Trident的方式将数据写入数据库,代替了bolt等类的使用
JdbcState.Options options = new JdbcState.Options()
.withConnectionProvider(connectionProvider)
.withMapper(this.jdbcMapper)
.withJdbcLookupMapper(new SimpleJdbcLookupMapper(new Fields("dept_name"), Lists.newArrayList(new Column("user_id", Types.INTEGER))))
.withTableName(TABLE_NAME)
.withSelectQuery(SELECT_QUERY);
JdbcStateFactory jdbcStateFactory = new JdbcStateFactory(options);
Stream stream = topology.newStream("userSpout", new JdbcSpout());
TridentState state = topology.newStaticState(jdbcStateFactory);
stream = stream.stateQuery(state, new Fields("user_id","user_name","create_date"), new JdbcQuery(), new Fields("dept_name"));
stream.partitionPersist(jdbcStateFactory, new Fields("user_id","user_name","dept_name","create_date"), new JdbcUpdater(), new Fields());
return topology.build();
}
}
spout类:
import org.apache.storm.spout.SpoutOutputCollector;
import org.apache.storm.task.TopologyContext;
import org.apache.storm.topology.OutputFieldsDeclarer;
import org.apache.storm.topology.base.BaseRichSpout;
import org.apache.storm.tuple.Fields;
import org.apache.storm.tuple.Values;
import com.google.common.collect.Lists;
import java.util.List;
import java.util.Map;
import java.util.Random;
/**
* @author cwc
* @date 2018年5月31日
* @description:存储数据的spout,我的读与写共用的这一个spout
* @version 1.0.0
*/
public class JdbcSpout extends BaseRichSpout {
private static final long serialVersionUID = 1L;
private SpoutOutputCollector collector;
//模拟数据
public static final List<Values> rows = Lists.newArrayList(
new Values(1,"peter",System.currentTimeMillis()),
new Values(2,"bob",System.currentTimeMillis()),
new Values(3,"alice",System.currentTimeMillis()));
@Override
public void nextTuple() {
Random rand = new Random();
Values row = rows.get(rand.nextInt(rows.size() - 1));
this.collector.emit(row);
Thread.yield();
System.out.println("信息加载中---------------------");
}
@Override
public void open(Map arg0, TopologyContext arg1, SpoutOutputCollector collector) {
this.collector =collector;
}
@Override
public void declareOutputFields(OutputFieldsDeclarer declarer) {
declarer.declare(new Fields("user_id","user_name","create_date"));
}
}
今天的代码就分享到这,各位共勉,努力、
深夜码文不易,若对看官有帮助,望看官可以在右侧打赏。