uva 10972(边双连通分量)

题目链接:http://acm.hust.edu.cn/vjudge/problem/viewProblem.action?id=33804

思路:和poj的一道题有点像,不过这道题图可能不连通,因此首先求边双连通分量,然后算每个连通分量的度数,显然叶子节点的度数为1,孤立点的度数为0,然后就是统计度数了,对于孤立点ans+=2,对于叶子节点,ans++。于是最后的答案就是(ans+1)/2了。

 1 #include <iostream>
 2 #include <cstdio>
 3 #include <cstring>
 4 #include <algorithm>
 5 #include <stack>
 6 #include <vector>
 7 using namespace std;
 8 #define MAXN 1111
 9 
10 int n, m, cnt, _count;
11 stack <int >S; 
12 vector <vector<int > >g;
13 
14 int low[MAXN], dfn[MAXN], color[MAXN];
15 int degree[MAXN];
16 bool mark[MAXN];
17 void Tarjan(int u, int father)
18 {
19     low[u] = dfn[u] = ++ cnt;
20     S.push(u);
21     mark[u] = true;
22     for(int i = 0; i < g[u].size(); i ++ ){
23         int v = g[u][i];
24         if(v == father)continue;
25         if(dfn[v] == 0) {
26             Tarjan(v, u);
27             low[u] = min(low[u], low[v]);
28         } else if(mark[v]) {
29             low[u] = min(low[u], dfn[v]);
30         }
31     }
32     if(low[u] == dfn[u]){
33         int x;
34         _count++;
35         do {
36             x = S.top();
37             S.pop();
38             mark[x] = false;
39             color[x] = _count;
40         }while(x != u);
41     }
42 }
43 
44 int main()
45 {
46     int u, v, ans;
47     while(~scanf("%d %d", &n, &m)){
48         g.clear();
49         g.resize(n+2);
50         while(m --){
51             scanf("%d %d",&u, &v);
52             g[u].push_back(v);
53             g[v].push_back(u);
54         }
55         memset(dfn, 0, sizeof(dfn));
56         memset(mark, false, sizeof(mark));
57         cnt = _count = 0;
58         for(int i = 1; i <= n; i ++){
59             if(dfn[i] == 0)Tarjan(i, -1);
60         }
61         if(_count == 1){
62             puts("0");
63             continue;
64         }
65         memset(degree, 0, sizeof(degree));
66         for(int i = 1; i <= n; i++){
67             for(int j = 0; j < g[i].size(); j++){
68                 if(color[i] != color[g[i][j]])degree[color[g[i][j]]] ++;
69             }
70         }
71         ans = 0;
72         for(int i = 1; i <= _count; i++){
73             if(degree[i] == 0)ans += 2; // 孤立点
74             else if(degree[i] == 1)ans ++; // 叶子节点
75         }
76         printf("%d\n", (ans + 1)/2 );
77     }
78     return 0;
79 }
View Code

 

posted @ 2013-09-20 22:22  ihge2k  阅读(513)  评论(0编辑  收藏  举报