散列表(哈希表)的实现

散列函数直接用key%size的形式,size为散列表的大小。

冲突处理采用平方探测法,为保证可以探测到整个散列表空间,散列表大小设置为4k+3形式的素数。

当散列表中的元素过多时会造成性能下降,这时应该倍增散列表的大小,重新计算原来散列表中每个元素在新的散列表中的位置。


散列表的实现


<span style="font-size:18px;">// HashTable.cpp : 定义控制台应用程序的入口点。
//

#include "stdafx.h"
#include<iostream>
using namespace std;

enum state{
	empty,
	deleted,
	busy,
};

template<typename T>
struct HashNode
{
	T key;
	state sta;
	HashNode()
	{
		sta = empty;
	}
};
const int prime_size = 5;
const static int prime[prime_size] //素数表,形式为4k+3,保证可以探测到整个散列表空间
={
	31, 59, 127, 263, 547
};
template<typename T>
class HashTable
{
private:
	HashNode<T>*hashtable;
	double alpha;//当前散列表的充满程度
	int size;//当前散列表的大小
	int current_busy;
	double max_alpha;
	int hash_func(T key)
	{
		return key%size;
	}

	int find_next_prime()
	{
		for (int i = 0; i < prime_size; i++)
		{
			if (prime[i]>size)
				return prime[i];
		}
		return size;
	}

	void reHash()//alpha>max_alpha时调整散列表大小
	{
		int newsize = find_next_prime();
		if (newsize == size)
			return;
		HashNode<T>*newhashtable = new HashNode<T>[newsize];
		for (int i = 0; i < size; i++)
		{
			if (hashtable[i].sta == busy)
			{
				newhashtable[hashtable[i].key % newsize].key = hashtable[i].key;
				newhashtable[hashtable[i].key % newsize].sta = busy;
			}
		}
		delete[]hashtable;
		hashtable = newhashtable;
		size = newsize;
		alpha =get_alpha();
	}
public:
	
	HashTable()
	{
		max_alpha = 0.80;
		size = prime[0];
		alpha = 0;
		hashtable = new HashNode<T>[size];
	}

	bool insert(T key)
	{
		int count = 0;
		while (true)
		{
			int index = (key + count*count) % size;
			if (hashtable[index].sta != busy)
			{
				hashtable[index].sta = busy;
				hashtable[index].key = key;
				current_busy++;
				alpha = get_alpha();
				if (alpha > max_alpha)
					reHash();
				return true;
			}
			if (hashtable[index].sta == busy&&hashtable[index].key == key)
			{
				cout<<"HashTable中已经有"<<key<<endl;
				return false;
			}
			index = (key - count*count) % size;
			while (index < 0)
			{
				index += size;
			}
			if (hashtable[index].sta != busy)
			{
				hashtable[index].sta = busy;
				hashtable[index].key = key;
				current_busy++;
				alpha = get_alpha();
				if (alpha > max_alpha)
					reHash();
				return true;
			}
			if (hashtable[index].sta == busy&&hashtable[index].key == key)
			{
				cout << "HashTable中已经有" << key << endl;
				return false;
			}
			count++;
		}
		
	}

	int find(T key)
	{
		int count = 0;
		while (true)
		{
			int index = (key + count*count) % size;
			if (hashtable[index].sta != busy)
			{
				return -1;
			}
			if (hashtable[index].key== key)
			{
				return index;
			}
			index = (key - count*count) % size;
			while (index < 0)
			{
				index += size;
			}
			if (hashtable[index].sta != busy)
			{
				return -1;
			}
			if (hashtable[index].key == key)
			{
				return index;
			}
			count++;
				if (count > size / 2 + 1)
					return -1;
		}
	}

	bool erase(T key)
	{
		int index = find(key);
		if (index >= 0)
		{
			hashtable[index].sta = deleted;
			current_busy--;
			alpha = get_alpha();
			return true;
		}
		return false;
	}

	double get_alpha()
	{
		return double(current_busy) / double(size);
	}


	~HashTable()
	{
		delete[]hashtable;
	}

};

int _tmain(int argc, _TCHAR* argv[])
{
	HashTable<int>aa;
	aa.insert(1);
	aa.insert(2);
	aa.insert(11);
	aa.insert(3);
	aa.insert(5);
	aa.insert(36);
	aa.insert(5);
	cout << aa.find(36) << endl;
	aa.erase(5) ;
	//cout << -7 % 4 << endl;
	system("pause");
	return 0;
}
</span>

版权声明:

posted on 2015-08-26 19:01  moffis  阅读(217)  评论(0编辑  收藏  举报

导航