splay树的实现
伸展树(Splay Tree),也叫分裂树,是一种二叉排序树,它能在O(log n)内完成插入、查找和删除操作。它由Daniel Sleator和Robert Tarjan创造,后者对其进行了改进。它的优势在于不需要记录用于平衡树的冗余信息。在伸展树上的一般操作都基于伸展操作。
伸展树并没有AVL的平衡要求,任意节点的左右子树可以相差任意深度。
基本伸展树操作:
1、插入:
当一个节点插入时,先插入,然后调整树(伸展操作),使得新插入的节点在根上。
2、查找:
如果查找成功(找到),然后调整树(伸展操作),使得被查找的节点成为树的新根。
如果查找失败(没有),那么在查找遇到NULL之前的那个节点成为新的根。也就是,如果查找的节点在树中,那么,此时根上的节点就是距离这个节点最近的节点。
3、查找最大(find_max)最小(find_min):
查找之后执行伸展。
4、删除最大最小:
a)删除最小:
首先执行查找最小的操作。
这时,要删除的节点就在根上。根据二叉查找树的特点,根没有左子节点。
使用根的右子结点作为新的根,删除旧的包含最小值的根。
b)删除最大:
首先执行查找最大的操作。
删除根,并把被删除的根的左子结点作为新的根。
5、删除:
首先执行查找操作,查找完后要删除的节点成为树根,然后删除根,剩下两个子树L(左子树)和R(右子树)。使用find_max查找L的最大节点,此时,L的根没有右子树。使R成为L的根的右子树。
可以看到算法的核心就是伸展操作,也就是调整树使得目标节点成为树根。
下面是我的实现,其实比AVL树还是简单不少,因为限制条件少了
// splay-tree.cpp : 定义控制台应用程序的入口点。 // #include "stdafx.h" #include<vector> #define KeyType int #define MAX -1000000 #define MIN 1000000 class SplayTree { public: static struct TreeNode { KeyType ele; TreeNode*lnode, *rnode, *parent; }; private: TreeNode*root; void splay(TreeNode*node); TreeNode*find_minmax(const KeyType val); public: SplayTree() { root = NULL; } bool insert(const KeyType val); bool erase(const KeyType val); TreeNode*find(const KeyType val); TreeNode*find_max(); TreeNode*get_root() { return root; } }; SplayTree::TreeNode*SplayTree::find_minmax(const KeyType val) { std::vector<TreeNode*>aa; aa.push_back(root); TreeNode*minmax = NULL; int near = MIN; while (!aa.empty())//非递归先根遍历 { TreeNode*node = aa.back(); aa.pop_back(); if (node->ele - val > 0 && node->ele - val < near) { minmax = node; near = node->ele - val; } if (node->rnode != NULL) aa.push_back(node->rnode); if (node->lnode != NULL) aa.push_back(node->lnode); } return minmax; } bool SplayTree::insert(const KeyType val) { if (root == NULL) { root = new TreeNode; root->ele = val; root->lnode = root->rnode = root->parent = NULL; return true; } TreeNode*pos = find_minmax(val); if (pos == NULL) { TreeNode*nn = root; while (nn->rnode != NULL) { nn = nn->rnode; } TreeNode*node = new TreeNode; node->ele = val; node->lnode = node->rnode = NULL; nn->rnode = node; node->parent = nn; splay(node); return true; } if (pos->lnode == NULL) { TreeNode*node = new TreeNode; node->ele = val; node->lnode = node->rnode = NULL; pos->lnode = node; node->parent = pos; splay(node); return true; } TreeNode*nn = pos->lnode; while (nn->rnode != NULL) { nn = nn->rnode; } TreeNode*node = new TreeNode; node->ele = val; node->lnode = node->rnode = NULL; nn->rnode = node; node->parent = nn; splay(node); return true; } bool SplayTree::erase(const KeyType val) { if (root == NULL) return false; TreeNode*todel = find(val); if (todel->ele != val) return false; TreeNode*r_node = root->rnode; TreeNode*l_node = root->lnode; delete root; if (l_node == NULL) { root = r_node; if (r_node != NULL) root->parent = NULL; return true; } root = l_node; root->parent = NULL; find_max(); root->rnode = r_node; if (r_node != NULL) r_node->parent = root; return true; } SplayTree::TreeNode* SplayTree::find_max() { if (root == NULL) return false; TreeNode*node = root; while (node->rnode != NULL) { node = node->rnode; } splay(node); return root; } SplayTree::TreeNode* SplayTree::find(const KeyType val) { if (root == NULL) return NULL; TreeNode*node = root; TreeNode*nn = NULL; while (node != NULL) { if (node->ele == val) { splay(node); return root; } if (node->ele > val) { nn = node; node = node->lnode; } else { nn = node; node = node->rnode; } } _ASSERTE(nn != NULL); splay(nn); return root; } void SplayTree::splay(SplayTree::TreeNode*node) { while (node->parent != NULL) { if (node->parent == root) { if (root->lnode == node) { TreeNode*nn = node; while (nn->rnode != NULL) { nn = nn->rnode; } root->lnode = NULL; nn->rnode = root; root->parent = nn; node->parent = NULL; root = node; return; } if (root->rnode == node) { TreeNode*nn = node; while (nn->lnode != NULL) { nn = nn->lnode; } root->rnode = NULL; nn->lnode = root; root->parent = nn; node->parent = NULL; root = node; return; } } TreeNode*parent = node->parent; TreeNode*grandpa = node->parent->parent; if (parent->rnode == node&&grandpa->lnode == parent) { TreeNode*node_lnode = node->lnode; TreeNode*node_rnode = node->rnode; TreeNode*gg = grandpa->parent; bool isleft = true; if (gg != NULL&&gg->rnode == grandpa) isleft = false; node->lnode = parent; node->rnode = grandpa; parent->parent = node; grandpa->parent = node; parent->rnode = node_lnode; if (node_lnode != NULL) node_lnode->parent = parent; grandpa->lnode = node_rnode; if (node_rnode != NULL) node_rnode->parent = grandpa; if (gg == NULL) { node->parent = NULL; root = node; return; } node->parent = gg; if (isleft) gg->lnode = node; else gg->rnode = node; } else if (parent->lnode == node&&grandpa->rnode == parent) { TreeNode*node_lnode = node->lnode; TreeNode*node_rnode = node->rnode; TreeNode*gg = grandpa->parent; bool isleft = true; if (gg != NULL&&gg->rnode == grandpa) isleft = false; node->rnode = parent; node->lnode = grandpa; parent->parent = node; grandpa->parent = node; parent->lnode = node_rnode; if (node_rnode != NULL) node_rnode->parent = parent; grandpa->rnode = node_lnode; if (node_lnode != NULL) node_lnode->parent = grandpa; if (gg == NULL) { node->parent = NULL; root = node; return; } node->parent = gg; if (isleft) gg->lnode = node; else gg->rnode = node; } else if (parent->rnode == node&&grandpa->rnode == parent) { TreeNode*node_lnode = node->lnode; TreeNode*parent_lnode = parent->lnode; TreeNode*gg = grandpa->parent; bool isleft = true; if (gg != NULL&&gg->rnode == grandpa) isleft = false; node->lnode = parent; parent->lnode = grandpa; parent->parent = node; grandpa->parent = parent; parent->rnode = node_lnode; if (node_lnode != NULL) node_lnode->parent = parent; grandpa->rnode = parent_lnode; if (parent_lnode != NULL) parent_lnode->parent = grandpa; if (gg == NULL) { node->parent = NULL; root = node; return; } node->parent = gg; if (isleft) gg->lnode = node; else gg->rnode = node; } else if (parent->lnode == node&&grandpa->lnode == parent) { TreeNode*node_rnode = node->rnode; TreeNode*parent_rnode = parent->rnode; TreeNode*gg = grandpa->parent; bool isleft = true; if (gg != NULL&&gg->rnode == grandpa) isleft = false; node->rnode = parent; parent->rnode = grandpa; parent->parent = node; grandpa->parent = parent; parent->lnode = node_rnode; if (node_rnode != NULL) node_rnode->parent = parent; grandpa->lnode = parent_rnode; if (parent_rnode != NULL) parent_rnode->parent = grandpa; if (gg == NULL) { node->parent = NULL; root = node; return; } node->parent = gg; if (isleft) gg->lnode = node; else gg->rnode = node; } else _ASSERTE(1 < 0); } } int _tmain(int argc, _TCHAR* argv[]) { SplayTree st; st.insert(100); SplayTree::TreeNode*root = st.get_root(); st.insert(500); root = st.get_root(); st.insert(600); root = st.get_root(); st.insert(800); root = st.get_root(); st.insert(1000); root = st.get_root(); st.insert(1500); root = st.get_root(); st.insert(900); root = st.get_root(); st.insert(300); root = st.get_root(); st.insert(200); root = st.get_root(); st.insert(700); root = st.get_root(); st.insert(550); root = st.get_root(); st.insert(350); root = st.get_root(); st.insert(650); root = st.get_root(); st.insert(750); root = st.get_root(); st.insert(950); root = st.get_root(); st.insert(400); root = st.get_root(); st.insert(450); root = st.get_root(); st.insert(250); root = st.get_root(); st.insert(580); root = st.get_root(); st.insert(380); root = st.get_root(); st.insert(660); root = st.get_root(); st.insert(780); root = st.get_root(); st.find(750); root = st.get_root(); st.erase(780); root = st.get_root(); return 0; }
版权声明: