discrete adaboost的C++实现
参考之前的博文,AdaBoost算法学习实现的c++代码
//adaboost.h #ifndef ADABOOST_H #define ADABOOST_H #include<cmath> #include<iostream> #include<vector> #include<assert.h> using namespace std; #define FEATURETYPE double struct FeaVec { unsigned int dim; std::vector<FEATURETYPE>fea; int label;//这里只去两个值,-1,1 FeaVec(unsigned int d) :dim(d) { } }; class weakclassfier; class adaboost { public: friend class weakclassfier; adaboost(); virtual ~adaboost(); void train(); int classify(FeaVec data); void load_trainset(vector<FeaVec>*data); protected: private: double*W; int dim;//特征维数 std::vector<FeaVec>trainset; std::vector<weakclassfier*>classfier; double aggri_error; }; #endif // ADABOOST_H
//adaboost.cpp #include "stdafx.h" #include "adaboost.h" class weakclassfier { public: friend class adaboost; weakclassfier(adaboost*ada) { this->ada = ada; min_error_rate = 1000000; } void build(); std::vector<int>* stumpclassify(int const k, double const threshold, vector<FeaVec>& data, bool greatthan); ~weakclassfier(); private: bool greaterthan;//控制不等式符号 int dim;//当前分类器在那一维进行分类 double threshold; double min_error_rate;//当前弱分类器在训练集上的错误率 std::vector<int>*predicted;//保存对训练集的分类结果 double alpha;//在强分类器中所占的权重 adaboost* ada; }; weakclassfier::~weakclassfier() { if (predicted != NULL) delete predicted; } void weakclassfier::build() { double minerror = 100000; for (int i = 0; i < ada->dim; i++)//外循环次数少 { double min = 100000; double max = -100000; for (int j = 0; j<ada->trainset.size(); j++) { if (ada->trainset[j].fea[i]>max) max = ada->trainset[j].fea[i]; if (ada->trainset[j].fea[i] < min) min = ada->trainset[j].fea[i]; } double step = (max - min) / double(10); for (double j = min; j < max;) { j += step; double current_error = 0; bool flag = false; vector<int>*aa = stumpclassify(i, j, ada->trainset, true); for (int k = 0; k < ada->trainset.size(); k++) current_error += ((*aa)[k] != ada->trainset[k].label) ? ada->W[k] : 0; if (current_error < min_error_rate) { min_error_rate = current_error; threshold = j; greaterthan = true; dim = i; if (predicted != NULL) delete predicted; predicted = aa; flag = true; } current_error = 0; aa = stumpclassify(i, j, ada->trainset, false); for (int k = 0; k < ada->trainset.size(); k++) current_error += ((*aa)[k] != ada->trainset[k].label) ? ada->W[k] : 0; //current_error += abs((*aa)[k] -ada->trainset[k].label) *ada->W[k]; if (current_error < min_error_rate) { min_error_rate = current_error; threshold = j; greaterthan = false; dim = i; if (predicted != NULL) delete predicted; predicted = aa; flag = true; } if (!flag)//new和delete必须配套使用 delete aa; } } assert(min_error_rate < 0.5); } std::vector<int>* weakclassfier::stumpclassify(int const k, double const threshold, vector<FeaVec>&data, bool greatthan) { std::vector<int>*pre = new vector < int > ; //开始假设都满足大于阈值 //开始假设都满足小于阈值 (*pre).insert((*pre).begin(), data.size(), 1); for (int j = 0; j < data.size(); j++) { if (greatthan&&data[j].fea[k] < threshold)//对于greater_than,ada->trainset[j]被预测为另一个类 { (*pre)[j] = -1; } else if (!greatthan&&data[j].fea[k] > threshold) { (*pre)[j] = -1; } } return pre; } adaboost::adaboost() { } adaboost::~adaboost() { for (int i = 0; i < classfier.size(); i++) delete classfier[i]; if (W != NULL) delete[]W; } void adaboost::train() { W = new double[trainset.size()]; //全部初始化为0,用memset可以,但某一特定值,只能用循环了 //memset(W, double(1) / double(trainset.size()), trainset.size()*sizeof(double)); for (int i = 0; i < trainset.size(); i++) W[i] = double(1) / double(trainset.size()); vector<double> aggrigate; aggrigate.resize(trainset.size()); while (classfier.size() < 4) { aggri_error = 0; weakclassfier*weak = new weakclassfier(this); weak->build(); if (weak->min_error_rate < 0.5) { //弱分类器的准确率越高,其权重也越大 weak->alpha = (0.5*log((1.0 - weak->min_error_rate) / (weak->min_error_rate + 1e-16))); classfier.push_back(weak); double sumW = 0; for (int j = 0; j < trainset.size(); j++) { //根据当前弱分类器分类结果将错分样本的权重提升 W[j] *= exp(weak->alpha*((*weak->predicted)[j] == trainset[j].label ? -1 : 1)); sumW += W[j]; } for (int j = 0; j < trainset.size(); j++) { W[j] /= (sumW + 0.00000001); // aggrigate[j] += weak->alpha*(*weak->predicted)[j]; //aggri_error += ((aggrigate[j] > 0) ? 1 : -1) == trainset[j].label ? 0 : 1; } //aggri_error /= double(trainset.size()); // if (aggri_error == 0) // break; } delete weak->predicted; } } int adaboost::classify(FeaVec data) { vector<FeaVec>bb; bb.push_back(data); double cc = 0; for (int i = 0; i < classfier.size(); i++) { vector<int>*aa = classfier[i]->stumpclassify(classfier[i]->dim, classfier[i]->threshold, bb, classfier[i]->greaterthan); // for (int j = 0; j < data.dim; j++) cc += (*aa)[0] * classfier[i]->alpha; delete aa; } return cc > 0 ? 1 : -1; } void adaboost::load_trainset(vector<FeaVec>*data) { trainset = *data; dim = data->back().dim; }
//main #include "stdafx.h" #include"adaboost.h" int _tmain(int argc, _TCHAR* argv[]) { cout << double(1) / double(5) << endl; FeaVec aa(2), bb(2), cc(2), dd(2),ee(2); aa.fea.push_back(2); aa.fea.push_back(1.1); aa.label = 1; bb.fea.push_back(1.3); bb.fea.push_back(1.0); bb.label = -1; cc.fea.push_back(1.0); cc.fea.push_back(1.0); cc.label = -1; dd.fea.push_back(2); dd.fea.push_back(1.0); dd.label = 1; ee.fea.push_back(1); ee.fea.push_back(2.1); ee.label = 1; vector<FeaVec>pp; pp.push_back(aa); pp.push_back(bb); pp.push_back(cc); pp.push_back(dd); pp.push_back(ee); adaboost ada; ada.load_trainset(&pp); ada.train(); FeaVec ff(2); ff.fea.push_back(0.9); ff.fea.push_back(1.1); int a = ada.classify(ff); return 0; }
版权声明: