有向图的强连通分量(Tarjan算法模板)
求有向图的强连通分量,Tarjan算法,大白书321页。lowlink[u]为u及其后代能追溯到最早祖先点v的pre[v]值,递归计算lowlink.
模板
int dfs_clock, scc_cnt;//scc_cnt记录强连通分量的个数,初始化是0但是是从1开始的
int pre[maxn], lowlink[maxn], sccno[maxn];;//sccno[u]记录点u属于第几个强联通分量,即点u所在强联通分量的编号
vector<int> g[maxn], scc[maxn];//scc[i]记录第i个强连通分量有哪些点
stack<int> s;//保存当前强连通分量中的点
void dfs(int u) {
pre[u] = lowlink[u] = ++dfs_clock;
s.push(u);
for (int i = 0; i < g[u].size(); ++i) {
int v = g[u][i];
if (0 == pre[v]) {
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if (0 == sccno[v]) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if (lowlink[u] == pre[u]) {
++scc_cnt;//从1开始
scc[scc_cnt].clear();
while (1) {
int x = s.top();
s.pop();
sccno[x] = scc_cnt;
scc[scc_cnt].push_back(x);
if (x == u) break;
}
}
}
void find_scc(int n) {
dfs_clock = scc_cnt = 0;
memset(pre, 0, sizeof(pre));
memset(sccno, 0, sizeof(sccno));
for (int i = 0; i < n; ++i) {
if (0 == pre[i]) dfs(i);
}
}
源程序
#include<bits/stdc++.h>
using namespace std;
const int maxn = 150;
const int maxm = 1050;
int n, m;
int dfs_clock, scc_cnt;//scc_cnt记录强连通分量的个数,初始化是0但是是从1开始的
int pre[maxn], lowlink[maxn], sccno[maxn];;//sccno[u]记录点u属于第几个强联通分量,即点u所在强联通分量的编号
vector<int> g[maxn], scc[maxn];//scc[i]记录第i个强连通分量有哪些点
stack<int> s;//保存当前强连通分量中的点
void init() {
for (int i = 0; i < maxn; ++i) g[i].clear();
}
void dfs(int u) {
pre[u] = lowlink[u] = ++dfs_clock;
s.push(u);
for (int i = 0; i < g[u].size(); ++i) {
int v = g[u][i];
if (0 == pre[v]) {
dfs(v);
lowlink[u] = min(lowlink[u], lowlink[v]);
}
else if (0 == sccno[v]) {
lowlink[u] = min(lowlink[u], pre[v]);
}
}
if (lowlink[u] == pre[u]) {
++scc_cnt;//从1开始
scc[scc_cnt].clear();
while (1) {
int x = s.top();
s.pop();
sccno[x] = scc_cnt;
scc[scc_cnt].push_back(x);
if (x == u) break;
}
}
}
void find_scc(int n) {
dfs_clock = scc_cnt = 0;
memset(pre, 0, sizeof(pre));
memset(sccno, 0, sizeof(sccno));
for (int i = 0; i < n; ++i) {
if (0 == pre[i]) dfs(i);
}
}
int main() {
while (scanf("%d%d", &n, &m) == 2) {
init();
for (int i = 1; i <= m; ++i) {
int from, to;
scanf("%d%d", &from, &to);
g[from].push_back(to);
}
find_scc(n);
cout << "共有" << scc_cnt << "个强连通分量\n";
for (int i = 1; i <= scc_cnt; ++i) {
sort(scc[i].begin(), scc[i].end());
cout << "第" << i << "个连通分量包含如下结点:\n";
for (int j = 0; j < scc[i].size(); ++j)
cout << scc[i][j] << ' ';
cout << endl;
}
}
return 0;
}