Uvalive 4287 - Proving Equivalences(强联通分量)

题目链接 https://vjudge.net/problem/UVALive-4287

【题意】
在数学中,我们常常需要完成若干个命题的等价性证明,比如4个命题a,b,c,d.我们证明a<->b,b<->c,c<->d,每次证明都是双向的,因此一共完成了6次推导。另外一种证明方法是a->b,b->c,c->d,d->a,只需4次。现在要证明n个命题等价,并且已经有了m个已知的推导过程,那么至少还需要多少次推导才能完成证明?

【思路】
把命题看成点,推导关系看成有向边,问题转换成了给出n个结点和m条边的有向图,要求加尽量少的边,使得新图强连通。那么我们可以先求出原图中的强连通分量,然后把每一个连通分量缩成一个点,形成一个DAG,那么这个DAG中假设入度为0的点的个数是c1,出度为0的点的个数是c2,答案便是max(c1,c2),当原图本身就是强联通时,答案是0。

#include<bits/stdc++.h>
using namespace std;

const int maxn = 20050;
const int maxm = 50050;

int n, m;
int dfs_clock, scc_cnt;
int pre[maxn], lowlink[maxn], sccno[maxn];
int inDegree[maxn], outDegree[maxn];
vector<int> g[maxn];
stack<int> s;

void dfs(int u) {
    pre[u] = lowlink[u] = ++dfs_clock;
    s.push(u);
    for (int i = 0; i < g[u].size(); ++i) {
        int v = g[u][i];
        if (0 == pre[v]) {
            dfs(v);
            lowlink[u] = min(lowlink[u], lowlink[v]);
        }
        else if (0 == sccno[v]) {
            lowlink[u] = min(lowlink[u], pre[v]);
        }
    }
    if (lowlink[u] == pre[u]) {
        ++scc_cnt;
        while (1) {
            int x = s.top();
            s.pop();
            sccno[x] = scc_cnt;
            if (x == u) break;
        }
    }
}

void find_scc(int n) {
    dfs_clock = scc_cnt = 0;
    memset(pre, 0, sizeof(pre));
    memset(sccno, 0, sizeof(sccno));
    for (int i = 0; i < n; ++i) {
        if (0 == pre[i]) dfs(i);
    }
}

int main() {
    int t;
    scanf("%d", &t);
    while (t--) {
        scanf("%d%d", &n, &m);
        for (int i = 0; i <= n; ++i) g[i].clear();
        for (int i = 0; i < m; ++i) {
            int from, to;
            scanf("%d%d", &from, &to);
            --from, --to;
            g[from].push_back(to);
        }
        find_scc(n);
        for (int i = 1; i <= scc_cnt; ++i) {//入度,出度初始化为0
            inDegree[i] = outDegree[i] = 0;
        }
        for (int u = 0; u < n; ++u) {
            for (int i = 0; i < g[u].size(); ++i) {
                int v = g[u][i];
                if (sccno[u] != sccno[v]) {
                    outDegree[sccno[u]] = inDegree[sccno[v]] = 1;
                    //编号为sccno[u]的强连通分量指向了编号为sccno[v]的强连通分量
                }
            }
        }
        int c1 = 0, c2 = 0;
        for (int i = 1; i <= scc_cnt; ++i) {
            if (0 == inDegree[i]) ++c1;
            if (0 == outDegree[i]) ++c2;
        }
        int ans = max(c1, c2);
        if (scc_cnt == 1) ans = 0;
        printf("%d\n", ans);
    }
    return 0;
}
posted @ 2018-02-01 16:37  不想吃WA的咸鱼  阅读(155)  评论(0编辑  收藏  举报