UVA 10735 - Euler Circuit(最大流+欧拉回路)

题目链接 https://cn.vjudge.net/problem/UVA-10735

【题意】
给出一个V个点E条边的混合图(有的是有向边,有的是无向边)求出它的一条欧拉回路,如果没有输出无解信息,输入保证忽略边的方向后图是连通的(V<=100, E<=500)

【思路】
看了书上的讲解和其它题解感觉这种做法太强了,用最大流来调整结点的入度和出度,真的想不到,贴个题解
这里写图片描述

代码的细节也有很多

#include<bits/stdc++.h>
using namespace std;
const int inf=2e9;
const int maxn=120;
const int maxm=550;

struct Edge{
    int from,to,cap,flow;
    Edge(int u,int v,int c,int f):from(u),to(v),cap(c),flow(f){}
};

struct Dinic{
    int n,m,s,t;
    vector<Edge> edges;
    vector<int> g[maxn];
    bool vis[maxn];
    int d[maxn];
    int cur[maxn];

    void init(int n){
        this->n=n;
        for(int i=0;i<n;i++) g[i].clear();
        edges.clear();
    }

    void add(int from,int to,int cap){
        edges.push_back(Edge(from,to,cap,0));
        edges.push_back(Edge(to,from,0,0));
        m=edges.size();
        g[from].push_back(m-2);
        g[to].push_back(m-1);
    }

    bool BFS(){
        memset(vis,0,sizeof(vis));
        queue<int> que;
        que.push(s);
        d[s]=0;
        vis[s]=1;
        while(!que.empty()){
            int x=que.front();que.pop();
            for(int i=0;i<g[x].size();++i){
                Edge& e=edges[g[x][i]];
                if(!vis[e.to] && e.cap>e.flow){
                    vis[e.to]=1;
                    d[e.to]=d[x]+1;
                    que.push(e.to);
                }
            }
        }
        return vis[t];
    }

    int DFS(int x,int a){
        if(x==t || a==0) return a;
        int flow=0,f;
        for(int& i=cur[x];i<g[x].size();++i){
            Edge& e=edges[g[x][i]];
            if(d[x]+1==d[e.to] && (f=DFS(e.to,min(a,e.cap-e.flow)))>0){
                e.flow+=f;
                edges[g[x][i]^1].flow-=f;
                flow+=f;
                a-=f;
                if(a==0) break;
            }
        }
        return flow;
    }

    int Maxflow(int s,int t){
        this->s=s;this->t=t;
        int flow=0;
        while(BFS()){
            memset(cur,0,sizeof(cur));
            flow+=DFS(s,inf);
        }
        return flow;
    }
};

Dinic dinic;
int n,m;
int degree[maxn];
bool used[maxm];
vector<Edge> edges;
vector<int> g[maxn],path;

void dfs(int u){
    for(int i=0;i<g[u].size();++i){
        int num=g[u][i];
        if(!used[num]){
            used[num]=true;
            int v=edges[num].to;
            dfs(v);
            path.push_back(v);
        }
    }
}

void init(){
    edges.clear();
    path.clear();
    for(int i=0;i<maxn;++i) g[i].clear();
    memset(used,0,sizeof(used));
    memset(degree,0,sizeof(degree));
    dinic.init(maxn);
}

int main(){
    int T;
    scanf("%d",&T);
    while(T--){
        init();
        scanf("%d%d",&n,&m);
        for(int i=0;i<m;++i){
            int u,v;
            char tp[2];
            scanf("%d%d%s",&u,&v,tp);
            if(tp[0]=='D'){
                edges.push_back(Edge(u,v,0,0));
                g[u].push_back(edges.size()-1);
            }
            else dinic.add(u,v,1);
            ++degree[u],--degree[v];
        }
        bool ok=true;
        int flow=0;
        for(int i=1;i<=n;++i){
            if(degree[i]&1){ok=false;break;}
            if(degree[i]>0){
                dinic.add(0,i,degree[i]/2);
                flow+=degree[i]/2;
            }
            else dinic.add(i,maxn-1,-degree[i]/2);
        }
        if(ok){
            if(dinic.Maxflow(0,maxn-1)!=flow) ok=false;
            else{
                for(int i=0;i<dinic.edges.size();++i){
                    Edge& e=dinic.edges[i];
                    if(e.from==0 || e.to==maxn-1) continue;
                    if(e.cap==0) continue;//有容量为0的反向边要过滤掉
                    if(e.flow==e.cap){//满流说明这条边应该反向,使得结点的出度减2
                        edges.push_back(Edge(e.to,e.from,0,0));
                        g[e.to].push_back(edges.size()-1);
                    }
                    else{
                        edges.push_back(Edge(e.from,e.to,0,0));
                        g[e.from].push_back(edges.size()-1);
                    }
                }
            }
        }
        if(ok){
            dfs(1);
            path.push_back(1);
            for(int i=path.size()-1;i>=0;--i)
                printf("%d%c",path[i],i==0?'\n':' ');
        }
        else puts("No euler circuit exist");
        if(T) puts("");
    }
    return 0;
}
posted @ 2018-08-29 19:21  不想吃WA的咸鱼  阅读(195)  评论(0编辑  收藏  举报