51Nod 1020 - 逆序排列(DP)

题目链接 http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1020

【题目描述】
在一个排列中,如果一对数的前后位置与大小顺序相反,即前面的数大于后面的数,那么它们就称为一个逆序。一个排列中逆序的总数就称为这个排列的逆序数。
如2 4 3 1中,2 1,4 3,4 1,3 1是逆序,逆序数是4。

1-n的全排列中,逆序数最小为0(正序),最大为n*(n-1) / 2(倒序)
给出2个数n和k,求1-n的全排列中,逆序数为k的排列有多少种?
例如:n = 4 k = 3。

1 2 3 4的排列中逆序为3的共有6个,分别是:
1 4 3 2
2 3 4 1
2 4 1 3
3 1 4 2
3 2 1 4
4 1 2 3

由于逆序排列的数量非常大,因此只需计算并输出该数 Mod 10^9 + 7的结果就可以了。

Input
第1行:一个数T,表示后面用作输入测试的数的数量。(1 <= T <= 10000)
第2 - T + 1行:每行2个数n,k。中间用空格分隔。(2 <= n <= 1000, 0 <= k <= 20000)
Output
共T行,对应逆序排列的数量 Mod (10^9 + 7)

Input示例
1
4 3
Output示例
6

【思路】
dp[i][j]dp[i][j] 表示 [1,i][1,i] 的全排列中逆序对数有 jj 对的排列的个数,那么考虑在 [1,i1][1,i-1] 的排列中插入新的元素 ii ,如果插入之后 ii 后面有 xx 个元素,那么就会新增 xx 个逆序对,所以有状态转移

dp[i][j]=x=0min(j,i1)dp[i1][jx]dp[i][j]=\sum_{x=0}^{min(j,i-1)}dp[i-1][j-x] 这里求和上限不只是 jj 而是 min(j,i1)min(j,i-1) 是因为将 ii 插入到 [1,i1][1,i-1] 的排列中最多产生 i1i-1 个新的逆序对,然后注意观察方程,其实计算 dp[i][j]dp[i][j] 时就是计算 dp[i1]dp[i-1]上的一段连续和,用一个数组 ss 维护一下上一行的前缀和就可以省去求和的步骤了

#include<bits/stdc++.h>
using namespace std;

const int maxn=1005;
const int maxk=20005;
const int mod=1e9+7;

int s[maxk];
int dp[maxn][maxk];

void solve(){
	dp[1][0]=1;
	for(int i=2;i<maxn;++i){
		s[0]=dp[i-1][0];
		for(int j=1;j<maxk;++j) s[j]=((long long)s[j-1]+(long long)dp[i-1][j])%mod;
		for(int j=0;j<maxk;++j){
			if(j<i) dp[i][j]=s[j];
			else dp[i][j]=(((long long)s[j]-(long long)s[j-i])%mod+mod)%mod;
		}
	}
}

int main(){
	solve();
	int T;
	scanf("%d",&T);
	while(T--){
		int n,k;
		scanf("%d%d",&n,&k);
		printf("%d\n",dp[n][k]);
	}
	return 0;
}
posted @ 2018-10-17 20:30  不想吃WA的咸鱼  阅读(122)  评论(0编辑  收藏  举报