51Nod1055 - 最长等差数列(DP)

题目链接 http://www.51nod.com/onlineJudge/questionCode.html#!problemId=1055

【题目描述】
N个不同的正整数,找出由这些数组成的最长的等差数列。

例如:1 3 5 6 8 9 10 12 13 14
等差子数列包括(仅包括两项的不列举)
1 3 5
1 5 9 13
3 6 9 12
3 8 13
5 9 13
6 8 10 12 14

其中6 8 10 12 14最长,长度为5。

Input
第1行:N,N为正整数的数量(3 <= N <= 10000)。
第2 - N+1行:N个正整数。(2<= A[i] <= 10^9)
Output
最长等差数列的长度。

Input示例
10
1
3
5
6
8
9
10
12
13
14
Output示例
5

【思路】
看了题解,用short int 才能卡过内存,坑不止这一点,题目说,从这N个数中找出若干数组成最长等差数列,所以顺序上是可以打乱的,需要先进行一下排序。
这道题的dp思路也很奇葩,先固定一个端点,然后两边扫描,不知道算不算双向dp。
假设 dp[i][j]dp[i][j] 表示以 ai,aja_i,a_j 为前两项的等差序列长度,计算的时候枚举等差数列的中的三项 ai,aj,aka_i,a_j,a_k,固定aja_j 然后去枚举 iikk,如果 ai+ak=2aja_i+a_k=2a_j 说明这三项可以构成等差,更新 dp[i][j]=dp[j][k]+1dp[i][j]=dp[j][k]+1

#include<bits/stdc++.h>
#define umax(a,b)(a>b?a:b)
using namespace std;

const int maxn=10005;

int n;
int a[maxn];
short int dp[maxn][maxn];

int main(){
	scanf("%d",&n);
	for(int i=0;i<n;++i) scanf("%d",&a[i]);
	sort(a,a+n);
	for(int i=0;i<n;++i){
		for(int j=i+1;j<n;++j) dp[i][j]=2;
	}
	int ans=2;
	for(int j=n-2;j>=1;--j){
		int i=j-1;
		int k=j+1;
		while(i>=0 && k<n){
			if(a[i]+a[k]<2*a[j]) ++k;
			else if(a[i]+a[k]>2*a[j]) --i;
			else{
				dp[i][j]=dp[j][k]+1;
				ans=umax(ans,(int)dp[i][j]);
				--i;
				++k;
			}
		}
	}
	printf("%d\n",ans);
	return 0;
}
posted @ 2018-10-18 10:29  不想吃WA的咸鱼  阅读(158)  评论(0编辑  收藏  举报