51Nod 1028 - 大数乘法 V2(FFT)
【题目描述】
【思路】
FFT的基础应用,把一个大数从低位到高位看成一个多项式,大数想乘看成多项式想乘,多项式的自变量 表示数字 ,乘完进位即可得到结果
#include<bits/stdc++.h>
using namespace std;
const double PI=acos(-1.0);
const int maxn=400005;
struct Complex {
double x,y;
Complex(double _x=0.0, double _y = 0.0) {
x = _x;
y = _y;
}
Complex operator - (const Complex &b) const {
return Complex(x - b.x, y - b.y);
}
Complex operator + (const Complex &b) const {
return Complex(x + b.x, y + b.y);
}
Complex operator * (const Complex &b) const {
return Complex(x * b.x - y * b.y, x * b.y + y * b.x);
}
};
void change(Complex y[], int len) {
int i, j, k;
for (i = 1, j = len / 2; i < len - 1; i++) {
if (i < j) {
swap(y[i], y[j]);
}
k = len / 2;
while (j >= k) {
j -= k;
k /= 2;
}
if (j < k) {
j += k;
}
}
return ;
}
void fft(Complex y[], int len, int on) {
change(y, len);
for (int h = 2; h <= len; h <<= 1) {
Complex wn(cos(-on * 2 * PI / h), sin(-on * 2 * PI / h));
for (int j = 0; j < len; j += h) {
Complex w(1, 0);
for (int k = j; k < j + h / 2; k++) {
Complex u = y[k];
Complex t = w * y[k + h / 2];
y[k] = u + t;
y[k + h / 2] = u - t;
w = w * wn;
}
}
}
if (on == -1) {
for (int i = 0; i < len; i++) {
y[i].x /= len;
}
}
}
Complex a[maxn],b[maxn];
char s1[maxn],s2[maxn];
int ans[maxn];
int main() {
scanf("%s%s",s1,s2);
int len1=strlen(s1);
int len2=strlen(s2);
int len=1;
while(len<2*len1 || len<2*len2) len<<=1;
for(int i=0;i<len1;++i) a[i]=Complex(s1[len1-1-i]-'0',0);
for(int i=len1;i<len;++i) a[i]=Complex(0,0);
for(int i=0;i<len2;++i) b[i]=Complex(s2[len2-1-i]-'0',0);
for(int i=len2;i<len;++i) b[i]=Complex(0,0);
fft(a,len,1);
fft(b,len,1);
for(int i=0;i<len;++i) a[i]=a[i]*b[i];
fft(a,len,-1);
for(int i=0;i<len;++i) ans[i]=(int)(a[i].x+0.5);
for(int i=0;i<len-1;++i){
ans[i+1]+=ans[i]/10;
ans[i]%=10;
}
while(!ans[len-1]) --len;
for(int i=len-1;i>=0;--i) printf("%d",ans[i]);
puts("");
return 0;
}