Java的内存模型

“让计算机并发执行若干个运算任务”与“更充分地利用计算机处理器的效能”之间的因果关系,看起来顺理成章,实际上它们之间的关系并没有想象中的那么简单,其中一个重要的复杂性来源是绝大多数的运算任务都不可能只靠处理器“计算”就能完成,处理器至少要与内存交互,如读取运算数据、存储运算结果等,这个I/O操作是很难消除的(无法仅靠寄存器来完成所有运算任务)。由于计算机的存储设备与处理器的运算速度有几个数量级的差距,所以现代计算机系统都不得不加入一层读写速度尽可能接近处理器运算速度的高速缓存(Cache)来作为内存与处理器之间的缓冲:将运算需要使用到的数据复制到缓存中,让运算能快速进行,当运算结束后再从缓存同步回内存之中,这样处理器就无须等待缓慢的内存读写了。

基于高速缓存的存储交互很好地解决了处理器与内存的速度矛盾,但是也为计算机系统带来更高的复杂度,因为它引入了一个新的问题:缓存一致性(Cache Coherence)。在多处理器系统中,每个处理器都有自己的高速缓存,而它们又共享同一主内存(Main Memory),当多个处理器的运算任务都涉及同一块主内存区域时,将可能导致各自的缓存数据不一致,如果真的发生这种情况,那同步回到主内存时以谁的缓存数据为准呢?为了解决一致性的问题,需要各个处理器访问缓存时都遵循一些协议,在读写时要根据协议来进行操作,这类协议有MSI、MESI(Illinois Protocol)、MOSI、Synapse、Firefly及Dragon Protocol等。在本文中将会多次提到的“内存模型”一词,可以理解为在特定的操作协议下,对特定的内存或高速缓存进行读写访问的过程抽象。不同架构的物理机器可以拥有不一样的内存模型,而Java虚拟机也有自己的内存模型,并且这里介绍的内存访问操作与硬件的缓存访问操作具有很高的可比性。

除了增加高速缓存之外,为了使得处理器内部的运算单元能尽量被充分利用,处理器可能会对输入代码进行乱序执行(Out-Of-Order Execution)优化,处理器会在计算之后将乱序执行的结果重组,保证该结果与顺序执行的结果是一致的,但并不保证程序中各个语句计算的先后顺序与输入代码中的顺序一致,因此,如果存在一个计算任务依赖另外一个计算任务的中间结果,那么其顺序性并不能靠代码的先后顺序来保证。与处理器的乱序执行优化类似,Java虚拟机的即时编译器中也有类似的指令重排序(Instruction Reorder)优化。

内存模型

定义Java内存模型并非一件容易的事情,这个模型必须定义得足够严谨,才能让Java的并发内存访问操作不会产生歧义;但是,也必须定义得足够宽松,使得虚拟机的实现有足够的自由空间去利用硬件的各种特性(寄存器、高速缓存和指令集中某些特有的指令)来获取更好的执行速度。经过长时间的验证和修补,在JDK 1.5(实现了JSR-133:Java Memory Model and Thread Specification Revision(Java内存模型和线程规范修订),Java内存模型已经成熟和完善起来了。

主内存与工作内存

Java内存模型的主要目标是定义程序中各个变量的访问规则,即在虚拟机中将变量存储到内存和从内存中取出变量这样的底层细节。此处的变量(Variables)与Java编程中所说的变量有所区别,它包括了实例字段、静态字段和构成数组对象的元素,但不包括局部变量与方法参数,因为后者是线程私有的。为了获得较好的执行效能,Java内存模型并没有限制执行引擎使用处理器的特定寄存器或缓存来和主内存进行交互,也没有限制即时编译器进行调整代码执行顺序这类优化措施。

ps:如果局部变量是一个reference类型,它引用的对象在Java堆中可被各个线程共享,但是reference本身在Java栈的局部变量表中,它是线程私有的,不会被共享,自然就不会存在竞争问题。

Java内存模型规定了所有的变量都存储在主内存(Main Memory)中(此处的主内存与介绍物理硬件时的主内存名字一样,两者也可以互相类比,但此处仅是虚拟机内存的一部分)。每条线程还有自己的工作内存(Working Memory,可与前面讲的处理器高速缓存类比),线程的工作内存中保存了被该线程使用到的变量的主内存副本拷贝,线程对变量的所有操作(读取、赋值等)都必须在工作内存中进行,而不能直接读写主内存中的变量

根据Java虚拟机规范的规定,volatile变量依然有工作内存的拷贝,但是由于它特殊的操作顺序性规定,所以看起来如同直接在主内存中读写访问一般,因此这里的描述对于volatile也并不存在例外。不同的线程之间也无法直接访问对方工作内存中的变量,线程间变量值的传递均需要通过主内存来完成,线程、主内存、工作内存三者的交互关系如图所示。

 

ps:

副本拷贝解释,如“假设线程中访问一个10MB的对象,也会把这10MB的内存复制一份拷贝出来吗?”,事实上并不会如此,这个对象的引用、对象中某个在线程访问到的字段是有可能存在拷贝的,但不会有虚拟机实现成把整个对象拷贝A一次。

主内存、工作内存与Java内存区域中的Java堆、栈、方法区等并不是同一个层次的内存划分,这两者基本上是没有关系的,如果两者一定要勉强对应起来,那从变量、主内存、工作内存的定义来看,主内存主要对应于Java堆中的对象实例数据部分除了实例数据,Java堆还保存了对象的其他信息,对于HotSpot虚拟机来讲,有Mark Word(存储对象哈希码、GC标志、GC年龄、同步锁等信息)、Klass Point(指向存储类型元数据的指针)及一些用于字节对齐补白的填充数据(如果实例数据刚好满足8字节对齐的话,则可以不存在补白)。工作内存则对应于虚拟机栈中的部分区域。从更低层次上说,主内存就直接对应于物理硬件的内存,而为了获取更好的运行速度,虚拟机(甚至是硬件系统本身的优化措施)可能会让工作内存优先存储于寄存器和高速缓存中,因为程序运行时主要访问读写的是工作内存。

内存间交互操作

关于主内存与工作内存之间具体的交互协议,即一个变量如何从主内存拷贝到工作内存、如何从工作内存同步回主内存之类的实现细节,Java内存模型中定义了以下8种操作来完成,虚拟机实现时必须保证下面提及的每一种操作都是原子的、不可再分的(对于double和long类型的变量来说,load、store、read和write操作在某些平台上允许有例外)

  1. lock(锁定):作用于主内存的变量,它把一个变量标识为一条线程独占的状态。
  2. unlock(解锁):作用于主内存的变量,它把一个处于锁定状态的变量释放出来,释放后的变量才可以被其他线程锁定。
  3. read(读取):作用于主内存的变量,它把一个变量的值从主内存传输到线程的工作内存中,以便随后的load动作使用。
  4. load(载入):作用于工作内存的变量,它把read操作从主内存中得到的变量值放入工作内存的变量副本中。
  5. use(使用):作用于工作内存的变量,它把工作内存中一个变量的值传递给执行引擎,每当虚拟机遇到一个需要使用到变量的值的字节码指令时将会执行这个操作。
  6. assign(赋值):作用于工作内存的变量,它把一个从执行引擎接收到的值赋给工作内存的变量,每当虚拟机遇到一个给变量赋值的字节码指令时执行这个操作。
  7. store(存储):作用于工作内存的变量,它把工作内存中一个变量的值传送到主内存中,以便随后的write操作使用。
  8. write(写入):作用于主内存的变量,它把store操作从工作内存中得到的变量的值放入主内存的变量中。

如果要把一个变量从主内存复制到工作内存,那就要顺序地执行read和load操作,如果要把变量从工作内存同步回主内存,就要顺序地执行store和write操作。注意,Java内存模型只要求上述两个操作必须按顺序执行,而没有保证是连续执行。也就是说,read与load之间、store与write之间是可插入其他指令的,如对主内存中的变量a、b进行访问时,一种可能出现顺序是read a、read b、load b、load a。

除此之外,Java内存模型还规定了在执行上述8种基本操作时必须满足如下规则:

  1. 不允许read和load、store和write操作之一单独出现,即不允许一个变量从主内存读取了但工作内存不接受,或者从工作内存发起回写了但主内存不接受的情况出现。
  2. 不允许一个线程丢弃它的最近的assign操作,即变量在工作内存中改变了之后必须把该变化同步回主内存。
  3. 不允许一个线程无原因地(没有发生过任何assign操作)把数据从线程的工作内存同步回主内存中。
  4. 一个新的变量只能在主内存中“诞生”,不允许在工作内存中直接使用一个未被初始化(load或assign)的变量,换句话说,就是对一个变量实施use、store操作之前,必须先执行过了assign和load操作。
  5. 一个变量在同一个时刻只允许一条线程对其进行lock操作,但lock操作可以被同一条线程重复执行多次,多次执行lock后,只有执行相同次数的unlock操作,变量才会被解锁。
  6. 如果对一个变量执行lock操作,那将会清空工作内存中此变量的值,在执行引擎使用这个变量前,需要重新执行load或assign操作初始化变量的值。
  7. 如果一个变量事先没有被lock操作锁定,那就不允许对它执行unlock操作,也不允许去unlock一个被其他线程锁定住的变量。
  8. 对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)。

这8种内存访问操作以及上述规则限定,再加上对volatile的一些特殊规定,就已经完全确定了Java程序中哪些内存访问操作在并发下是安全的。由于这种定义相当严谨但又十分烦琐,实践起来很麻烦,所以将介绍这种定义的一个等效判断原则——先行发生原则(happen-before),用来确定一个访问在并发环境下是否安全。

内存屏障

内存屏障是被插入两个 CPU 指令之间的一种指令,用来禁止处理器指令发生重排序(像屏障一样),从而保障有序性的。

另外,为了达到屏障的效果,它也会使处理器写入、读取值之前,将主内存的值写入高速缓存,清空无效队列,从而保障可见性。

常见有 4 种屏障:

  • LoadLoad 屏障:对于这样的语句 Load1;LoadLoad;Load2,在 Load2 及后续读取操作要读取的数据被访问前,保证 Load1 要读取的数据被读取完毕。

  • StoreStore 屏障:对于这样的语句 Store1;StoreStore;Store2,在 Store2 及后续写入操作执行前,保证 Store1 的写入操作对其他处理器可见。

  • LoadStore 屏障:对于这样的语句 Load1;LoadStore;Store2,在 Store2 及后续写入操作被执行前,保证 Load1 要读取的数据被读取完毕。

  • StoreLoad 屏障:对于这样的语句 Store1;StoreLoad;Load2,在 Load2 及后续所有读取操作执行前,保证 Store1 的写入对所有处理器可见。它的开销是四种屏障中最大的(冲刷写缓冲器,清空无效化队列)。在大多数处理器的实现中,这个屏障是个万能屏障,兼具其他三种内存屏障的功能。

Java 中对内存屏障的使用在一般的代码中不太容易见到,常见的有 volatile 和 synchronized 关键字修饰的代码块(后面再展开介绍),还可以通过 Unsafe 这个类来使用内存屏障。

对于volatile型变量的特殊规则

关键字volatile可以说是Java虚拟机提供的最轻量级的同步机制,Java内存模型对volatile专门定义了一些特殊的访问规则,当一个变量定义为volatile之后,它将具备两种特性:

  1. 第一是保证此变量对所有线程的可见性,这里的“可见性”是指当一条线程修改了这个变量的值,新值对于其他线程来说是可以立即得知的。而普通变量不能做到这一点,普通变量的值在线程间传递均需要通过主内存来完成,例如,线程A修改一个普通变量的值,然后向主内存进行回写,另外一条线程B在线程A回写完成了之后再从主内存进行读取操作,新变量值才会对线程B可见。

    由于volatile变量只能保证可见性,在不符合以下两条规则的运算场景中:

    • 运算结果并不依赖变量的当前值,或者能够确保只有单一的线程修改变量的值。
    • 变量不需要与其他的状态变量共同参与不变约束。

    仍然要通过加锁(使用synchronized或java.util.concurrent中的原子类)来保证原子性。

  2. 第二是使用volatile变量禁止指令重排序优化,普通的变量仅仅会保证在该方法的执行过程中所有依赖赋值结果的地方都能获取到正确的结果,而不能保证变量赋值操作的顺序与程序代码中的执行顺序一致。因为在一个线程的方法执行过程中无法感知到这点,这也就是Java内存模型中描述的所谓的“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics)。

观察加入volatile和未加入volatile关键字时所生成汇编代码的差别,通过对比就会发现,关键变化在于有volatile修饰的变量,赋值后(前面mov%eax,0x150(%esi)这句便是赋值操作)多执行了一个“lock addl $0x0,(%esp)”操作,这个操作相当于一个内存屏障(Memory Barrier或Memory Fence,指重排序时不能把后面的指令重排序到内存屏障之前的位置),只有一个CPU访问内存时,并不需要内存屏障;但如果有两个或更多CPU访问同一块内存,且其中有一个在观测另一个,就需要内存屏障来保证一致性了。这句指令中的“addl $0x0,(%esp)”(把ESP寄存器的值加0)显然是一个空操作(采用这个空操作而不是空操作指令nop是因为IA32手册规定lock前缀不允许配合nop指令使用),关键在于lock前缀,查询IA32手册,它的作用是使得本CPU的Cache写入了内存,该写入动作也会引起别的CPU或者别的内核无效化(Invalidate)其Cache,这种操作相当于对Cache中的变量做了一次前面“store和write”操作。所以通过这样一个空操作,可让前面volatile变量的修改对其他CPU立即可见。因此,lock addl$0x0,(%esp)指令把修改同步到内存时,意味着所有之前的操作都已经执行完成,这样便形成了“指令重排序无法越过内存屏障”的效果。  

 

lock前缀指令实际上相当于一个内存屏障(也成内存栅栏),内存屏障会提供3个功能:

  1. 它确保指令重排序时不会把其后面的指令排到内存屏障之前的位置,也不会把前面的指令排到内存屏障的后面;即在执行到内存屏障这句指令时,在它前面的操作已经全部完成;
  2. 它会强制将对缓存的修改操作立即写入主存;
  3. 如果是写操作,它会导致其他CPU中对应的缓存行无效。

我们回头看一下Java内存模型中对volatile变量定义的特殊规则。假定T表示一个线程,V和W分别表示两个volatile型变量,那么在进行read、load、use、assign、store和write操作时需要满足如下规则:

  1. 只有当线程T对变量V执行的前一个动作是load的时候,线程T才能对变量V执行use动作;并且,只有当线程T对变量V执行的后一个动作是use的时候,线程T才能对变量V执行load动作。线程T对变量V的use动作可以认为是和线程T对变量V的load、read动作相关联,必须连续一起出现(这条规则要求在工作内存中,每次使用V前都必须先从主内存刷新最新的值,用于保证能看见其他线程对变量V所做的修改后的值)。
  2. 只有当线程T对变量V执行的前一个动作是assign的时候,线程T才能对变量V执行store动作;并且,只有当线程T对变量V执行的后一个动作是store的时候,线程T才能对变量V执行assign动作。线程T对变量V的assign动作可以认为是和线程T对变量V的store、write动作相关联,必须连续一起出现(这条规则要求在工作内存中,每次修改V后都必须立刻同步回主内存中,用于保证其他线程可以看到自己对变量V所做的修改)。
  3. 假定动作A是线程T对变量V实施的use或assign动作,假定动作F是和动作A相关联的load或store动作,假定动作P是和动作F相应的对变量V的read或write动作;类似的,假定动作B是线程T对变量W实施的use或assign动作,假定动作G是和动作B相关联的load或store动作,假定动作Q是和动作G相应的对变量W的read或write动作。如果A先于B,那么P先于Q(这条规则要求volatile修饰的变量不会被指令重排序优化,保证代码的执行顺序与程序的顺序相同)。

volatile 型变量使用场景:

总结起来,就是“一次写入,到处读取”,某一线程负责更新变量,其他线程只读取变量(不更新变量),并根据变量的新值执行相应逻辑。例如状态标志位更新,观察者模型变量值发布。

对于long和double型变量的特殊规则

Java内存模型要求lock、unlock、read、load、assign、use、store、write这8个操作都具有原子性,但是对于64位的数据类型(long和double),在模型中特别定义了一条相对宽松的规定:允许虚拟机将没有被volatile修饰的64位数据的读写操作划分为两次32位的操作来进行,即允许虚拟机实现选择可以不保证64位数据类型的load、store、read和write这4个操作的原子性,这点就是所谓的long和double的非原子性协定(Nonatomic Treatment ofdouble and long Variables)。

如果有多个线程共享一个并未声明为volatile的long或double类型的变量,并且同时对它们进行读取和修改操作,那么某些线程可能会读取到一个既非原值,也不是其他线程修改值的代表了“半个变量”的数值。不过这种读取到“半个变量”的情况非常罕见(在目前商用Java虚拟机中不会出现),因为Java内存模型虽然允许虚拟机不把long和double变量的读写实现成原子操作,但允许虚拟机选择把这些操作实现为具有原子性的操作,而且还“强烈建议”虚拟机这样实现。在实际开发中,目前各种平台下的商用虚拟机几乎都选择把64位数据的读写操作作为原子操作来对待,因此我们在编写代码时一般不需要把用到的long和double变量专门声明为volatile。

原子性、可见性与有序性

Java内存模型是围绕着在并发过程中如何处理原子性、可见性和有序性这3个特征来建立的,我们逐个来看一下哪些操作实现了这3个特性。

原子性(Atomicity):由Java内存模型来直接保证的原子性变量操作包括read、load、assign、use、store和write,我们大致可以认为基本数据类型的访问读写是具备原子性的(例外就是long和double的非原子性协定,只要知道这件事情就可以了,无须太过在意这些几乎不会发生的例外情况)。如果应用场景需要一个更大范围的原子性保证(经常会遇到),Java内存模型还提供了lock和unlock操作来满足这种需求,尽管虚拟机未把lock和unlock操作直接开放给用户使用,但是却提供了更高层次的字节码指令monitorenter和monitorexit来隐式地使用这两个操作,这两个字节码指令反映到Java代码中就是同步块——synchronized关键字,因此在synchronized块之间的操作也具备原子性。

可见性(Visibility):可见性是指当一个线程修改了共享变量的值,其他线程能够立即得知这个修改。volatile变量的时候我们已详细讨论过这一点。Java内存模型是通过在变量修改后将新值同步回主内存,在变量读取前从主内存刷新变量值这种依赖主内存作为传递媒介的方式来实现可见性的,无论是普通变量还是volatile变量都是如此,普通变量与volatile变量的区别是,volatile的特殊规则保证了新值能立即同步到主内存,以及每次使用前立即从主内存刷新。因此,可以说volatile保证了多线程操作时变量的可见性,而普通变量则不能保证这一点。除了volatile之外,Java还有两个关键字能实现可见性,即synchronized和final。同步块的可见性是由“对一个变量执行unlock操作之前,必须先把此变量同步回主内存中(执行store、write操作)”这条规则获得的,而final关键字的可见性是指:被final修饰的字段在构造器中一旦初始化完成,并且构造器没有把“this”的引用传递出去(this引用逃逸是一件很危险的事情,其他线程有可能通过这个引用访问到“初始化了一半”的对象),那在其他线程中就能看见final字段的值。

有序性(Ordering):Java内存模型的有序性在讲解volatile时也详细地讨论过了,Java程序中天然的有序性可以总结为一句话:如果在本线程内观察,所有的操作都是有序的;如果在一个线程中观察另一个线程,所有的操作都是无序的。前半句是指“线程内表现为串行的语义”(Within-Thread As-If-Serial Semantics),后半句是指“指令重排序”现象和“工作内存与主内存同步延迟”现象

Java语言提供了volatile和synchronized两个关键字来保证线程之间操作的有序性,volatile关键字本身就包含了禁止指令重排序的语义,而synchronized则是由“一个变量在同一个时刻只允许一条线程对其进行lock操作”这条规则获得的,这条规则决定了持有同一个锁的两个同步块只能串行地进入。

先行发生原则(happen-before)

如果Java内存模型中所有的有序性都仅仅靠volatile和synchronized来完成,那么有一些操作将会变得很烦琐,但是我们在编写Java并发代码的时候并没有感觉到这一点,这是因为Java语言中有一个“先行发生”(happens-before)的原则。这个原则非常重要,它是判断数据是否存在竞争、线程是否安全的主要依据,依靠这个原则,我们可以通过几条规则一揽子地解决并发环境下两个操作之间是否可能存在冲突的所有问题。

下面是Java内存模型下一些“天然的”先行发生关系,这些先行发生关系无须任何同步器协助就已经存在,可以在编码中直接使用。如果两个操作之间的关系不在此列,并且无法从下列规则推导出来的话,它们就没有顺序性保障,虚拟机可以对它们随意地进行重排序。

  1. 程序次序规则(Program Order Rule):在一个线程内,按照程序代码顺序,书写在前面的操作先行发生于书写在后面的操作。准确地说,应该是控制流顺序而不是程序代码顺序,因为要考虑分支、循环等结构。
  2. 管程锁定规则(Monitor Lock Rule):一个unlock操作先行发生于后面对同一个锁的lock操作。这里必须强调的是同一个锁,而“后面”是指时间上的先后顺序。
  3. volatile变量规则(Volatile Variable Rule):对一个volatile变量的写操作先行发生于后面对这个变量的读操作,这里的“后面”同样是指时间上的先后顺序。
  4. 线程启动规则(Thread Start Rule):Thread对象的start()方法先行发生于此线程的每一个动作。
  5. 线程终止规则(Thread Termination Rule):线程中的所有操作都先行发生于对此线程的终止检测,我们可以通过Thread.join()方法结束、Thread.isAlive()的返回值等手段检测到线程已经终止执行。
  6. 线程中断规则(Thread Interruption Rule):对线程interrupt()方法的调用先行发生于被中断线程的代码检测到中断事件的发生,可以通过Thread.interrupted()方法检测到是否有中断发生。
  7. 对象终结规则(Finalizer Rule):一个对象的初始化完成(构造函数执行结束)先行发生于它的finalize()方法的开始。
  8. 传递性(Transitivity):如果操作A先行发生于操作B,操作B先行发生于操作C,那就可以得出操作A先行发生于操作C的结论。

Java语言无须任何同步手段保障就能成立的先行发生规则就只有上面这些了。

 

posted @ 2016-11-10 15:53  wade&luffy  阅读(385)  评论(0编辑  收藏  举报