BPTT算法推导
随时间反向传播 (BackPropagation Through Time,BPTT)
符号注解:
- \(K\):词汇表的大小
- \(T\):句子的长度
- \(H\):隐藏层单元数
- \(E_t\):第t个时刻(第t个word)的损失函数,定义为交叉熵误差\(E_t=-y_t^Tlog(\hat{y}_t)\)
- \(E\):一个句子的损失函数,由各个时刻(即每个word)的损失函数组成,\(E=\sum\limits_t^T E_t\)。
注: 由于我们要推倒的是SGD算法, 更新梯度是相对于一个训练样例而言的, 因此我们一次只考虑一个句子的误差,而不是整个训练集的误差(对应BGD算法) - \(x_t\in\mathbb{R}^{K\times 1}\):第t个时刻RNN的输入,为one-hot vector,1表示一个单词的出现,0表示不出现
- \(s_t\in\mathbb{R}^{H\times 1}\):第t个时刻RNN隐藏层的输入
- \(h_t\in\mathbb{R}^{H\times 1}\):第t个时刻RNN隐藏层的输出
- \(z_t\in\mathbb{R}^{K\times 1}\):输出层的汇集输入
- \(\hat{y}_t\in\mathbb{R}^{K\times 1}\):输出层的输出,激活函数为softmax
- \(y_t\in\mathbb{R}^{K\times 1}\):第t个时刻的监督信息,为一个one-hot vector
- \(r_t=\hat{y}_t-y_t\):残差向量
- \(W\in\mathbb{R}^{H\times K}\):从输入层到隐藏层的权值
- \(U\in\mathbb{R}^{H\times H}\):隐藏层上一个时刻到当前时刻的权值
- \(V\in\mathbb{R}^{K\times H}\):隐藏层到输出层的权值
他们之间的关系:
其中,\(\sigma(\cdot)\)是sigmoid函数。由于\(x_t\)是one-hot向量,假设第\(j\)个词出现,则\(Wx_t\)相当于把\(W\)的第\(j\)列选出来,因此这一步是不用进行任何矩阵运算的,直接做下标操作即可,在matlab里就是\(W(:,x_t)\)。
BPTT与BP类似,是在时间上反传的梯度下降算法。RNN中,我们的目的是求得\(\frac{\partial E}{\partial U},\frac{\partial E}{\partial W},\frac{\partial E}{\partial V}\),根据这三个变化率来优化三个参数\(U,V,W\)
注意到\(\frac{\partial E}{\partial U}=\sum\limits_t \frac{\partial E_t}{\partial U}\),因此我们只要对每个时刻的损失函数求偏导数再加起来即可。
1.计算\(\frac{\partial E_t}{\partial V}\)
注:推导中用到了之前推导用到的结论。其中\(r_t^{(i)}=(\hat{y}_t-y_t)^{(i)}\)表示残差向量第i个分量,\(h_t^{(j)}\)表示\(h_t\)的第j个分量。
上述结果可以改写为:
其中\(\otimes\)表示向量外积。
2.计算\(\frac{\partial E_t}{\partial U}\)
由于U是各个时刻共享的,所以t之前每个时刻U的变化都对\(E_t\)有贡献,反过来求偏导时,也要考虑之前每个时刻U对E的影响。我们以\(s_k\)为中间变量,应用链式法则:
但由于\(\frac{\partial s_k}{\partial U}\)(分子向量,分母矩阵)以目前的数学发展水平是没办法求的,因此我们要求这个偏导,可以拆解为\(E_t\)对\(U_{ij}\)的偏导数:
其中,\(\delta_k=\frac{\partial E_t}{\partial s_k}\),遵循
的传递关系,应用链式法则有:
其中,\(\odot\)表示向量点乘。于是,我们得到了关于\(\delta\) 的递推关系式。由\(\delta_t\)出发,我们可以往前推出每一个\(\delta\),现在计算\(\delta_t\):
\begin{equation}\delta_t=\frac{\partial E_t}{\partial s_t}=\frac{\partial h_t}{\partial s_t}\frac{\partial z_t}{\partial h_t}\frac{\partial E_t}{\partial z_t}=diag(1-h_t\odot h_t)\cdot VT\cdot(\hat{y}_t-y_t)=(VT(\hat{y}t-y_t))\odot (1-h_t\odot h_t)\end{equation}
将\(\delta_0,...,\delta_t\)代入$ \frac{\partial E_t}{\partial U{ij}} $有:
将上式写成矩阵形式:
不失严谨性,定义\(h_{-1}\)为全0的向量。
3.计算\(\frac{\partial E_t}{\partial W}\)
按照上述思路,我们可以得到
由于\(x_k\)是个one-hot vector,假设其第\(m\)个位置为1,那么我们在更新\(W\)时只需要更新\(W\)的第\(m\)列即可,计算\(\frac{\partial{E_t}}{\partial{W}}\)的伪代码如下:
delta_t = V.T.dot(residual[T]) * (1-h[T]**2)
for t from T to 0
dEdW[ :,x[t] ] += delta_t
#delta_t = W.T.dot(delta_t) * (1 - h[t-1]**2)
delta_t = U.T.dot(delta_t) * (1 - h[t-1]**2)